
16-18 October 2003, Sofia, Bulgaria

A Method for Fast Index Lookup in Databases through
Linear Approximation Window

Krassimir Tzvetanov1, Michael Momchedjikov2

Abstract – in this paper we present a fast and simple algorithm
for fast timestamp-to-sequence-number matching based on the
linear window approximation.

Keywords – database, search, lookup, approximation

I. Introduction

Have you ever had a database that gets some ������ records
per week? Did you ever try to make a simple search in it? The
following method presents a very efficient way of improving
performance by locating the indexed sequential number of
the record(s) your looking for.

In large databases it is necessary to index data so that you
queries can run faster. Unfortunately many times this is not
possible if the data you are trying to index is very diverse
and not correlating. In the traffic analysis system presented
in [1], there were collected about 1.5-2 million records per
day. Every record keeps an indexed sequential number, a
time/date field and other not essential to the algorithm data.
The time/data field expresses the count of seconds that have
passed since the epoch in seconds since Jan 1 1970 seconds
[2]. Keeping in mind that a day has 86400 and the database
collects 1.5 million records per second it is not practical to
index by that field. The first big problem we encounter is the
size of the index itself. It’s easy to calculate the for only one
week we will have 604 800 groups of indexes and each one of
them will hold average of 18 different records. 18 out of mil-
lions is negligible number it’s not worth indexing. Over a half
a million groups in an index is something not easy to search
through (consider multiplying that by the number of weeks
you plan to keep accounting information for). The time for
searching through the index file is considerable. There is even
no way to fit the index into the memory so it has to, always,
be searched from the disk.

The experiment showed that on MySQL[3] database the
index created on the timestamp field takes 16-18% of the
database itself.

II. Presenting the Method

In this paper we show a method that allows significantly
faster lookup of the value that must be indexed. It helps you

1Krassimir Tzvetanov holds Bs from the Faculty of Communictions
and Communications Technologies, Technical University, Sofia; Email:
krassi@tu-sofia.bg

2Michael Momchedjikov is with the Faculty of Communictions and
Communications Technologies, Technical University, Kliment Ohridski 8,
1000 Sofia, Bulgaria; Email: mom@tu-sofia.bg

find the sequence number of the record in the database based
on the timestamp of the record. It’s obvious that the sequence
number multiplied by the size of the record gives you the ex-
act location of the record.

� � ����� � (1)

where � is the offset in the file, �� is the sequence of the
record and �� is the size of the record.

If the traffic accounting records were inserted into the
database with a constant speed, it would also be possible to
use that formula. Unfortunately this is not possible since traf-
fic has very different characteristics. On Figure 1 the number
of records received on an average work and weekend days
of the university network is shown. As it can be seen during
work days the distribution is far from linear.

(It is also interesting to note that if you have data from
very long time period (over 10 days) the daily oscillations
will be invisible in the first few steps, even though they will
become a cause of errors in the next steps. In my further re-
search we are considering dynamically changing the distri-
bution law used for approximation.)

In this case linear3 approximation will yield very incorrect
results which will increase search time, etc.

At the same time the distribution is linear for an infinitely
short time frame. Therefore the smaller the time frame is –
the closer to linear the distribution will be.

You can also consider that if you constantly decrease the
time frame (i.e. search window) you’ll be getting better re-
sults.

This is what exactly the algorithm does. It makes its first
linear approximation with a window the size of the whole
database. As expected, the result will be far from precise.
However, this information is sufficient so that we can nar-
row the search window for the next step. The new window
is calculated on the basis of the approximated value. If the
new window doesn’t contain the value we are looking for,
then we rerun this step using a window with borders: the old
value of the border and the new value (the one that is not cor-
rect). This window approximately has the same size of the
one, which we would have used if there had been no error.

The approximation is done in the following manner: first,
we find the average records per hour (2):

�� � ��� ���������� ����� � (2)

where�� is the record rate (record per second),� �� and���

3If linear approximation is replaced by approximation following the dis-
tribution law of the variable we use. The results should be much better. This
is a focus of future work.

252

Krassimir Tzvetanov , Michael Momchedjikov

D is trubutio n o f the num be r o f re co rds re ce ive d pe r hour

re cord s /hour
0

5 00 00

1 00 00 0

1 50 00 0

2 00 00 0

2 50 00 0

3 00 00 0

3 50 00 0

23 2 5 8 11 14 17 20 23 2 5 8 11 14 17 20 23 2 5 8 11 14 17 20

Time of day

R
e

c
o

rd
s

re
c

o
rd

e
d

 p
e

r • • • • • • • • • • • • • • •

Fig. 1. Distribution of the number of records received per hour

are the lower and upper time borders of the window.� � is the
time/date of the record we are looking for.

The next step is to approximate the sequence number
����(3) based on the this rate:

�� ���� � ���� ����� ��� � (3)

where W�� and W�� are the sequence numbers of the lower
and upper borders.

As a next step, we calculate the new window borders
(4)(5). Note that it is not symmetric around the approx. value.

����� � ��	��� � ��� ����� � ����� ���� (4)

����� � �
���� � ���� � ��� � ����� ���� (5)

Where �� and �� denote the lower and upper border.
Where � refers to the current step and �� � to the next step
of the algorithm.

We repeat this procedure recursively, making smaller and
smaller windows – therefore achieving better approximation.
There is a minimum distance below which is better to con-
tinue searching consequently without approximation. This
value is based on the speed of the CPU, disk array, and net-
work activity. It is difficult to calculate this value precisely.
However the experiment shows that this value varies between
200 and 500 records.

III. Results from an Experiment Conducted in
TU-Sofia

Below are included graphs based on data taken from the uni-
versity network during 5 consecutive days and a test run of
the program. (Both workdays and weekends are included to
make distribution more complex; the data is about 12 million
records).

On Figure 2 you can see how both the approximated value
and the window change. Both reach close proximity really
fast.

On Figure 3 you can see the absolute and relative error
during each step of the algorithm. The line, marked with �,

Window and approximated value changes

9150000
9155000
9160000
9165000
9170000
9175000

9180000
9185000
9190000
9195000
9200000

1 2 3 4 5 6 7 8 9 10
Algorhitm step

S
eq

u
en

ce
n

u
m

b
er

in
th

e
d

at
ab

as
e

Low er border

Upper borber

Approximated

Fig. 2. Window and approximated value changes

Approximation Error

-2000

-1000

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

Algorhitm Step

A
b

so
lu

te
 a

n
d

re
la

ti
ve

er
ro

r

Absolute Error

Relative Error

Fig. 3. Approximation Error

represents the absolute error in prediction. It goes down ex-
ponentially. (The value after the first step, not shown on the
graph, is 236 128 records absolute error).

Note that the minimum distance value of the algorithm
is achieved at step 6 (or 7). This means that the algorithm
is more time consuming than regular sequential search from
this moment on.

The line, marked with �, represents the relative error (ab-
solute error/how wide the search window is). As you can see
on the first step the relative error is small because we have
data from several days which hides the daily variations.

When we continue after the 6th step, the algorithm starts
to work inefficiently. This is because the rules for calculat-
ing the window are not symmetric. This helps while work-
ing with large data arrays but makes the algorithm unstable

253

A Method for Fast Index Lookup in Databases through Linear Approximation Window

when working with small amounts of data. This is not really
an issue since there is one more reason that justifies why we
should stop before that point. Even more, those quotients can
be changed.

On the test system the proposed algorithm finds the record
about 35-40 times faster than the one without an index (the
test database includes only some 10 million records). If you
have more records in the database – you’ll get better results.

Because the method of searching through the database
without an index is sequential, the time increases for the
newer records linearly because they occupy the last positions
in the database. The search time of proposed method does
not depend on the location of the record in the database. It
depends solely on the number of records in the database but
not in a linear way. The search time grows very slowly related
to the increase (of records) in number.

IV. Further Research

As already noted in our future work we plan to find ways
to improve the approximation method. It is interesting to re-
place the linear approximation with approximation with nor-
mal distribution. It is also interesting research ways to dy-
namically change the approximation method.

Acknowledgements

We would like to express our special thanks to the Ministry
of Education and Science for their continuing support.

References

[1] Krassimir Tzvetanov, 2003, System for Traffic Analysis and
Accounting in IP Networks

[2] http://cr.yp.to/proto/utctai.html
[3] MySQL documentation: http://www.mysql.com/doc/en/

254

