+» ICEST 2003

16-18 October 2003, Sofia, Bulgaria

Distributed Search in WAN Located Databases
(Repositories) Using Z39.50 Protocol

Krasimir Trichkov?!

Abstract — This standard specifies a client/server based proto-
col for Information Retrieval. It specifies proceduresand struc-
tures for a client to search a database provided by a server, re-
trieve database records identified by a search, scan aterm list,
and sort a result set. The protocol addresses communication
between corresponding information retrieval applications, the
client and server.

Keywords — Internet, Z39.50, Zebra, Yaz, Zap, Php, Database.

I. Introduction

Z39.50 [1] protocol specifies formats and procedures gov-
erning the exchange of messages between a client and server
enabling the client to request that the server search a database
and identify records which meet specified criteria, and to
retrieve some or all of the identified records. This stan-
dard, ANSI/NISO Z39.50-1995 [2,3], Information Retrieval
(Z239.50) Application Service Definition and Protocol Speci-
fication, is one of a set of standards produced to facilitate the
interconnection of computer systems. It is positioned with
respect to other related standards by the Open Systems In-
terconnection (OSI) basic reference model (ISO 7498). This
standard defines a protocol within the application layer of
the reference model, and is concerned in particular with the
search and retrieval of information in databases.

Il. Basics of the Protocol

The client may initiate requests on behalf of a user; the pro-
tocol addresses communication between corresponding in-
formation retrieval applications, the client and server (which
may reside on different computers); it does not address inter-
action between the client and user.

Z39.50 provides the following basic capabilities, all of
which are supported in Z39.50 as well. The client may send
a search, indicating one or more databases, and including a
query as well as parameters which determine whether records
identified by the search should be returned as part of the re-
sponse. The server responds with a count of records iden-
tified and possibly some or all of the records. The client
may then retrieve selected records. The client assumes that
records selected by the search form a “result set” (an ordered
set, order determined by the server), and records may be ref-
erenced by position within the set.

Optional capabilities include:

LKrasimir Trichkov is with Institute of Computer and Communication
Systems - Bulgarian Academy of Sciences, Acad. G. Bonchev bl.2, 1113
Sofia, Bulgaria, e-mail: krasi@hsi.iccs.bas.bg

Fig.

295

. The client may specify an element set indicating data

elements to retrieve in cases where the client does not
wish to receive complete database records. For exam-
ple, the client might specify “If 5 or less records are
identified, transmit "full’ records; if more than 5 records
are found, transmit ’brief’ records”.

. The client may indicate a preferred syntax for response

records, for example, USMARC [4,5].

. The client may name a result set for subsequent refer-

ence.

. The client may delete a named result set.

. The server may impose access control restrictions on

the client, by demanding authentication before process-
ing a request.

. The server may provide resource control by sending an

unsolicited or solicited status report; the server may sus-
pend processing and allow the client to indicate whether
to continue.

1 explains distributed search.

Client WWW client
739.50 (Web browser)

A
HTTP

WWW server
(Web server)
ZAP
739.50-WWW

?

739.50

Server 1
739.50

Server 3
739.50

Server 2
739.50

Fig. 1. Distributed search

Distributed Search in WAN Located Databases (Repositories) Using Z39.50 Protocol

This Z39.50 network was implemented in E-culture por-
tal, which is part of the REGNET project (www.regnet.org).
REGNET aims to set up a functional Network of Cul-
tural Service Centers through Europe which will provide IT-
services dedicated to cultural heritage organizations and it is
funded by European Commission. For software development
are used Apache web server [10] under Linux Operation Sys-
tem [11] (www.apache.org), Zebra Server [6] and Zap mod-
ule [6]. To exchange data between REGNET centers is used
Z39.50 protocol. Sample record that uses in Regnet is pre-
sented below.

Table 1. Example of record

<gils>

<Title> Spirit </Title>

<Creator> Romil Kalinov </Creator>
<Contribution> UBA </Contribution>
<Date>2001.10.29 </Date>

<Description> Spirit, 2001 </Description>
<Identifier> 1 </Identifier>

<Type> Image </Type>

<Language> en </Language>

<Subject> Mixed technique </Subject>
<Publisher> 2001.11.06 </Publisher>

<Format> jpeg </Format>

<Source>Romil Kalinov , Sofia, Spirit, 2001, Mixed
technique, 66 x 48 cm, Price: $ 135

Dimension 501x 709pixels, resolution 72 pixels/inch
</Source>

<Relation>
http://www3.iccs.bas.bg/RecordsUBA/romil.jpg
</Relation>

<Coverage> Contemporary Bulgarian Art
</Coverage>

<Rights> UBA </Rights>

</gils>

I1l. Record Types

Indexing is a per-record process, in which either in-
sert/modify/delete will occur. Before a record is indexed
search keys are extracted from whatever might be the lay-
out the original record (sgml,html,text, etc..). The Zebra sys-
tem currently supports two fundamental types of records:
structured and simple text. To specify a particular extraction
process, use either the command line option -t or specify a
recordType setting in the configuration file.

The Zebra system is designed to support a wide range of
data management applications. The system can be configured
to handle virtually any kind of structured data. Each record
in the system is associated with a record schema which lends
context to the data elements of the record. Any number of
record schema can coexist in the system. Although it may
be wise to use only a single schema within one database, the
system poses no such restrictions.

Records pass through three different states during process-
ing in the system.

1. When records are accessed by the system, they are rep-
resented in their local or native format. This might be
SGML or HTML files, News or Mail archives, MARC
records. If the system doesn’t already know how to read
the type of data you need to store, you can set up an in-
put filter by preparing conversion rules based on regular
expressions and possibly augmented by a flexible script-
ing language (Tcl). The input filter produces as output
an internal representation:

2. When records are processed by the system, they are rep-
resented in a tree-structure, constructed by tagged data
elements hanging off a root node. The tagged elements
may contain data or yet more tagged elements in a recur-
sive structure. The system performs various actions on
this tree structure (indexing, element selection, schema
mapping, etc.),

3. Before transmitting records to the client, they are first
converted from the internal structure to a form suitable
for exchange over the network - according to the Z39.50
standard.

The RecordType parameter in the zebra.cfg file, or the —¢
option to the indexer tells Zebra how to process input records.
Two basic types of processing are available - raw text and
structured data. Raw text is just that, and it is selected by
providing the argument text to Zebra. Structured records are
all handled internally using the basic mechanisms described
in the subsequent sections. Zebra can read structured records
in many different formats. How this is done is governed by
additional parameters after the “grs” keyboard, separated by
*“” characters.

Four basic subtypes to the grstype are currently available:

grs.sgml - This is the canonical input format — described
below. It is a simple SGML-like syntax.

grs.regx.filter — This enables a user-supplied input filter.
The mechanisms of these filters are described below.

grs.tcl.filter — Similar to grs.regx but using Tcl for rules.

grs.marc.abstract syntax — This allows Zebra to read
records in the 1ISO2709 (MARC) encoding standard. In
this case, the last parameter abstract syntax names the
.abs file (see below) which describes the specific MARC
structure of the input record as well as the indexing
rules.

IV. Canonical Input Format

Although input data can take any form, it is sometimes useful
to describe the record processing capabilities of the system in
terms of a single, canonical input format that gives access to
the full spectrum of structure and flexibility in the system. In
Zebra, this canonical format is an “SGML-like” syntax [6,7].

296

Krasimir Trichkov

To use the canonical format specify grs.sgml as the record
type.

Consider a record describing an information resource
(such a record is sometimes known as a locator record). It
might contain a field describing the distributor of the infor-
mation resource, which might in turn be partitioned into var-
ious fields providing details about the distributor, like this in
Table 2:

Table 2. Fields details

<Distributor>

<Name> ICCS </Name>

<Organization> ICCS </Organization>
<Street-Address>Sofia, Bulgaria</Street-Address>
<City> Sofia </City>

<Zip-Code> 1113 </Zip-Code>

<Country> Bulgaria </Country>

<Telephone> (359 2) 9792774 </Telephone>
</Distributor>

The keywords surrounded by <...> are tags, while the sec-
tions of text in between are the data elements. A data element
is characterized by its location in the tree that is made up by
the nested elements. Each element is terminated by a clos-
ing tag - beginning with </, and containing the same sym-
bolic tag-name as the corresponding opening tag. The gen-
eral closing tag - <>/ - terminates the element started by the
last opening tag. The structuring of elements is significant.
The element Telephone, for instance, may be indexed and
presented to the client differently, depending on whether it
appears inside the Distributor element, or some other, struc-
tured data element such a Supplier element.

V. Record Root

The first tag in a record describes the root node of the tree
that makes up the total record. In the canonical input for-
mat, the root tag should contain the name of the schema that
lends context to the elements of the record. The following is
a GILS record that contains only a single element (strictly
speaking, that makes it an illegal GILS record, since the
GILS profile includes several mandatory elements - Zebra
does not validate the contents of a record against the Z39.50
profile, however - it merely attempts to match up elements of
a local representation with the given schema) — Table 3:

Table 3. Match up elements

<gils>
<title> Geometry of motion </title>
</gils>

VI. Variants

Zebra allows you to provide individual data elements in a
number of variant forms. Examples of variant forms are tex-
tual data elements which might appear in different languages,
and images which may appear in different formats or layouts.

The variant system in Zebra is essentially a representation of
the variant mechanism of Z239.50.

The following is an example of a title element which oc-
curs in two different languages — Table 4.

Table 4. Different languages

<title>

<var lang lang "eng">Geometry of motion </>
<var lang lang "bg">Text in Bulgarian</>
</title>

The syntax of the variant element is <var class type
value>. The available values for the class and type fields are
given by the variant set that is associated with the current
schema .Variant elements are terminated by the general end-
tag </>, by the variant end-tag </var>, by the appearance
of another variant tag with the same class and value settings,
or by the appearance of another, normal tag. In other words,
the end-tags for the variants used in the example above could
have been saved.

Variant elements can be nested — Table 5.

Table 5. Variant of elements

<title>

<var lang lang "eng"><var body iana "text/plain">
Geometry of motion

</title>

Associates two variant components to the variant list for
the title element. Given the nesting rules described above,
we could write Table 6.

Table 6. Variant list for the title element
<title>
<var lang lang "eng"><var body iana "text/plain">
Geometry of motion
</title>

The title element above comes in two variants. Both have
the IANA body type “text/plain”, but one is in English, and
the other in Danish. The client, using the element selection
mechanism of Z39.50, can retrieve information about the
available variant forms of data elements, or it can select spe-
cific variants based on the requirements of the end-user [8,9].

VII. Exchange Formats

Converting records from the internal structure to en exchange
format is largely an automatic process. Currently, the follow-
ing exchange formats are supported:

1. GRS-1. The internal representation is based on GRS-
1/XML, so the conversion here is straightforward. The
system will create applied variant and supported variant
lists as required, if a record contains variant informa-
tion.

2. XML [12,13]. The internal representation is based on
GRS-1/XML so the mapping is trivial. Note that XML

297

Distributed Search in WAN Located Databases (Repositories) Using Z39.50 Protocol

schemas, preprocessing instructions and comments are
not part of the internal representation and therefore will
never be part of a generated XML record. Future ver-
sions of the Zebra will support that.

3. SUTRS. Again, the mapping is fairly straightforward.
Indentation is used to show the hierarchical structure
of the record. All “GRS” type records support both the
GRS-1 and SUTRS representations.

4. 1S02709-based formats (USMARC, etc.). Only records
with a two-level structure (corresponding to fields
and subfields) can be directly mapped to 1SO2709.
For records with a different structuring (eg., GILS),
the representation in a structure like USMARC in-
volves a schema-mapping, to an “implied” USMARC
schema (implied, because there is no formal schema
which specifies the use of the USMARC fields out-
side of 1SO2709). The resultant, two-level record is
then mapped directly from the internal representation
to 1SO2709.

5. Explain. This representation is only available for
records belonging to the Explain schema.

6. Summary. This ASN-1 based structure is only avail-
able for records belonging to the Summary schema -
or schema which provide a mapping to this schema (see
the description of the schema mapping facility above).

7. SOIF. Support for this syntax is experimental, and
is currently keyed to a private Index Data OID
(1.2.840.10003.5.1000.81.2). All abstract syntaxes can
be mapped to the SOIF format, although nested ele-
ments are represented by concatenation of the tag names
at each level.

VIIl. Software Components

A. Zebra. (http://mww.indexdata.dk/zebra/).

Zebra s a fielded free-text indexing and retrieval engine with
a Z39.50 frontend. You can use any compatible, commercial
or freeware Z39.50 client to access data stored in Zebra. Ze-
bra may be used free-of-charge in non-profit applications by
non-commercial organizations. Zebra is a high-performance,
general-purpose structured text indexing and retrieval en-
gine. It reads structured records in a variety of input formats
(eg. email, XML, MARC) and allows access to them through
exact Boolean search expressions and relevance-ranked free-
text queries. Zebra supports large databases (more than ten
gigabytes of data, tens of millions of records). It supports
incremental, safe database updates on live systems. You can
access data stored in Zebra using a variety of Index Data tools
(eg. YAZ and PHP/YAZ) as well as commercial and freeware
Z39.50 clients and toolkits.

B. Yaz (http://www.indexdata.dk/yaz/).

The YAZ toolkit offers several different levels of access to
the Z39.50 and ILL protocols. The level that you need to use
depends on your requirements, and the role (server or client)
that you want to implement.

C. Zap (http://www.indexdata.dk/zap/).

ZAP is a module which allows you to build simple WWW in-
terfaces to 239.50 servers. ZAP hides most of the complexity
of session management, parallel searching. The integration
of system into the popular Apache server offers several ad-
vantages to the operators and users of the software, including
simplified maintenance of the Module, and improved perfor-
mance. However, it is also possible to run the software as a
CGl-script if required.

This is free software (open source) that can works on var-
ious operating systems (as Windows and Linux) and various
Web Servers (as Apache and 11S).

IX. Conclusion

The essence and functional possibilities on communication
protocol Z39.50 was presented. Definite are special futures of
the protocol and its application for information search in dis-
tributed databases. Definitely are software component of the
protocol. Proposed the decision for works with distributed
and heterogeneous databases using Z239.50. The protocol is
platform and software independent.

This protocol is applied for Bulgarian partnership in the
international project REGNET — REGional NETwork (Re-
gional Networks of Culture Heritage).

References

[1] http://www.loc.gov/z3950/agency

[2] http://www.niso.org/z3950.html

[3] http://www.ansi.org

[4] http://www.loc.gov/marc

[5] http://lcweb.loc.gov/marc/umb/um07t010.html
[6] http://lwww.indexdata.dk

[7] http://www.gils.net

[8] http://www.amico.org

[9] http://dublincore.org

[10] Peter Wainwright, Professional Apache, Wrox, November
1999

[11] David Pitts, Bill Ball, et al., Red Hat Linux 6, Sams, 1999.

[12] Alex Homer, XML in IE5 Programmer’s Reference, Wrox
Press, 1999.

[13] Lee Anne Phillips, Using XML, QUE, 2000.

298

