
16-18 October 2003, Sofia, Bulgaria

A Review of Selection, Mutation and Recombination in
Genetic Algorithms

Milena Karova1

Abstract – Genetic Algorithms have been applied to a number
of optimization problems. This paper presents a new analysis of
principal genetic operators: selection, mutation and recombina-
tion. New methods are described. Recombination (crossover) is
also a multitude of methods to create a coherent set of genes
from two parent sets. GA selection perform the equivalent role
to natural selection. Mutation enables the GA to maintain di-
versity whilst also introducing some random search behavior.

Keywords – genetic algorithms, selection, mutation, crossover,
recombination, inversion, genotype, phenotype.

I. Introduction

A Genetic Algorithms are a family of computational mod-
els inspired by evolution. These algorithms encode a poten-
tial solution to a specific problem on a simple chromosome
– like data structure and apply a recombination operators to
these structures so as to preserve critical information. Ge-
netic algorithms (GA) are often viewed as function optimiz-
ers, although the range of problems to which GA have been
applied is quite broad.

An implementation of GA begins with a population of
(typically random) chromosomes. One then evaluates these
structures and allocates reproductive opportunities in such a
way that those chromosomes which represent a better solu-
tion to the target problem are “given” more chances to “re-
produce” than those chromosomes which are poorer solu-
tions. The “goodness” of a solution is typically defined with
respect to the current population.

The term Genetic Algorithm has two meanings. In a strict
interpretation the genetic algorithm refers to a model intro-
duced and investigated by John Holland (1975) [5]. It is still
the case that most of the existing theory for GA applies either
solely or primarily to the model introduced by Holland. It
comes from the fact that individuals are represented as strings
of bits analogous to chromosomes and genes. In addition to
recombination by crossover, we also throw in random muta-
tion of these bit-strings every so often.

A GA is any population-based model that uses selection
and recombination operators to generate new simple points
in a search space. Many GA models have been introduced by
researchers largely working from an experimental perspec-
tive. Many of these researchers are application oriented and
are typically interested in GA as optimization tools.

1Milena Karova is with the the department of Computer Science, Stu-
dentska 1, Technical University Varna Email: mkarova@ieee.bg

II. Functioning of GA

The fitness or objective function is used to map the indi-
vidual’s bit strings into a positive number which is called
the individual’s fitness. There are two steps involved in this
mapping (however in some problems these two steps are es-
sentially accomplished as one). The first step we will call
“decoding” and the second, “calculating fitness”. To under-
stand decoding it helps to partition individuals into two parts
commonly called the genotype or genome and the phenotype.
These terms are borrowed from biology. The genotype, as its
name implies, specifically refers to an individual’s genetic
structure or for our purpose, the individual’s bit string(s).

The phenotype refers to the observable appearance of
an individual (pheno comes from Greek for “to show” -
phainein).

The principle of GA is simple:

1. Encoding of the problem in a binary string.

2. Random generation of a population. This one includes a
genetic pool representing a group of possible solutions.

3. Reckoning of a fitness value for each subject. It will di-
rectly depend on the distance to the optimum.

4. Selection of the subjects that will mate according to
their share in the population global fitness.

5. Genomes crossover and mutations.

6. And then start again from point 3.

The functioning of a GA can also be described in reference
to genotype (GTYPE) and phenotype (PTYPE) notions.

1. Select pairs of GTYPE according to their PTYPE fit-
ness.

2. Apply the genetic operators (crossover, mutation. . . ) to
create new GTYPE.

3. Develop GTYPE to get the PTYPE of a new generation
and start again from 1.

III. Selection

Selection is one of the most important elements of all GA’s.
Selection determines which individuals in the population will
have all or some of its “genetic material” passed on to the
next generation of individuals. The object of the selection

314



Milena Karova

method employed in a GA is to give exponentially increas-
ing trials to the fittest individuals. The most common way in
which this is accomplished is by a technique called “roulette-
wheel” selection. As you will see, it is the implementation
of roulette-wheel selection which necessitates positive fitness
values where higher values indicate greater fitness. Roulette
wheel selection gets its name from the fact that the algorithm
works like a roulette wheel in which each slot on the wheel is
paired with an individual in the population. This is done such
that the size of each slot is proportional to the corresponding
individuals fitness. It should be obvious then that maximiza-
tion problems fit directly into this paradigm - larger slot im-
plies larger fitness. Negative values are not allowed because
how can you have a slot of negative size?

A common way to implement roulette wheel selection is
to:

1. Sum up all the fitness values in the current population,
call this value SumFitness. SumFitness is in effect the
total area of the roulette wheel.

2. Generate a random number between 0 and 1, called
Rand.

3. Multiply SumFitness by Rand to get a number between
0 and SumFitness which we will call RouletteValue
(RouletteValue = SumFitnesss x Rand). Think of this
value as the distance the imaginary roulette ball travels
before falling into a slot.

4. Finally we sum up the fitness values (slot sizes) of the
individuals in the population until we reach an individ-
ual which makes this partial sum greater or equal to
RouletteValue [Fig. 1]. This will then be the individual
that is selected.

It is not always intuitively obvious that this algorithm ac-
tually implements a weighted roulette wheel. To see that it

This will then be the individual that is sele

Roulette Wheel

1

23

4

5

Individual Fitness Slot Size % 
1 30 35 
2 10 12 
3 15 18 
4 25 29 
5 5 6 

SumFittnes: 85

Fig. 1. Roulette Wheel Selection with Five Individuals of Varying
Fitness

does lets look at some extreme situations. Imagine an indi-
vidual, I, whose fitness is equal to SumFitness (implying all
other individuals have a fitness of zero).

Clearly no matter what number is generated for Roulet-
teValue, � will always throw the partial sum over the top,
thus having a selection probability of 1. This corresponds to
a roulette wheel with just one slot.

On the other extreme, an individual, �, with fitness zero can
never cause the partial sum to become greater than Roulette-
Value, so it has a zero probability of getting selected. This
corresponds to a slot that does not exist on the wheel. All
other individuals between these extremes will have a proba-
bility of throwing the partial sum over the top that is propor-
tional to their size, which is exactly how we would expect a
weighted roulette wheel to behave.

The important quality of all legitimate GA selection tech-
niques is to reward fitter individuals by letting them repro-
duce more often. This is one of the important ways in which
a GA differs from random search.

IV. Recombination (Crossover)

A. 1-point crossover

The traditional GA uses 1-point crossover, where the two
mating chromosomes are each cut once at corresponding
points, and the sections after the cuts exchanged. It is here
that two individuals selected in the previous step are allowed
to mate to produce offspring. Crossover is the process by
which the bit-strings of two parent individuals combine to
produce two child individuals.

There are many ways in which crossover can be imple-
mented. Some of the ways are broadly applicable to all types
of problems and others are highly problem specific. Here
we will talk about the most primitive (but also highly effec-
tive) form of crossover, single-point crossover [Fig. 2]. Sin-
gle point crossover starts by selecting a random position on
the bit string, called a cut point or cross point. The bits from
the left of the cut point on parent1 are combined with the bits
from the right of the cut point in parent2 to form child1. The
opposite segments are combined to form child2.

Thus child1 and child2 will tend to be different from either
of their parents yet retain some features of both. If the parents
each had high fitness (which is likely by the fact that they
were selected) then there is a good chance that at least one
of the children is as fit or better than either parent. If this is
the case, then selection will favor this child’s s procreation,
if not than selection will favor the child’s extinction.

There is of course a possibility (albeit small) that most or

Fig. 2. Example of single-point crossover

315



A Review of Selection, Mutation and Recombination in Genetic Algorithms

all of the crosses produce children of less fitness. To counter
this possibility, a parameter, px – the probability of crossover,
is introduced. Before crossover is performed a simulated coin
is flipped that is biased to come up heads (TRUE) with prob-
ability px. If it does, then crossover is performed, if not than
the parents are passed into the next generation unchanged.
Since without crossover there is no hope for advancement,
px is usually high (��� � �� � ���).

However, many different crossover algorithms have been
devised, often involving more than one point. [2]

B. 2-point crossover

In 2-point crossover, (and multi-point crossover in general),
rather than linear strings, chromosomes are regarded as loops
formed by joining the ends together. To exchange a segment
from one loop with that from another loop requires the selec-
tion of two cut points, as shown in Fig. 3.

Fig. 3. Chromosome Viewed as Loop

In this view, 1-point crossover with one of the cut points
fixed at the start of the string. Hence 2-point crossover per-
forms the same task as 1-point crossover (i.e. exchanged a
single segment), but is more general. A chromosome con-
sidered as a loop can contain more building blocks – since
they are able to “wrap around” at the end of the string. Re-
searchers now agree that 2-point crossover is generally better
than 1-point crossover.

C. Uniform crossover

Uniform crossover is radically different to 1-point crossover.
Each gene in the offspring is created by copying the corre-
sponding gene from one of the other parent, chosen accord-
ing to a randomly generated crossover mask. Where there is
a 1 in the crossover mask, the gene is copied from the first
parent, and where there is a 0 in the mask, the gene is copied
from the second parent, as shown in Fig. 4. The process is
repeated with the parents exchanged to produce the second
offspring. A new crossover mask is randomly generated for
each pair of parents.

Fig. 4. Uniform Crossover

Offspring therefore contain a mixture of genes from each
parent. The number of effective crossing points is not fixed,
but will average L/2 (where L is the chromosome length).

D. Which technique is best?

Arguments over which is the best crossover method to
use still rage on. Syswerda [7] argues in favor of uniform
crossover. Under uniform crossover the number of specify
bit values, is equally likely to be disrupted. uniform crossover
has the advantage that the ordering of genes is entirely irrele-
vant. This means that reordering operators such as inversion
are unnecessary. GA performance using 2-point crossover
drops dramatically if the recommendations of the building
block hypothesis are not adhered to. Uniform crossover , on
the other hand, still performs well – almost as well as 2-point
crossover used on a correctly ordered chromosome. Uniform
crossover therefore appears to be robust.

Spears & DeJong [6] are very critical of multi-point
and uniform crossover. They stick by the theoretical anal-
yses which show 1- and 2-point crossover are optimal. 2-
point crossover will perform poorly when the population has
largely converged, due to reduced crossover productivity.

In a slightly later paper DeJong &Spears [6] conclude that
modified 2-point crossover is best for large populations, but
the increased disruption of uniform crossover is beneficial if
the population size is small (in comparison to the problem
complexity), and so gives a more robust performance.

Goldberg [2] describes a rather different crossover oper-
ator, partially matched crossover (PMX), for use in order-
based problems. (In an order-based problem, such as the trav-
eling salesperson problem, gene values are fixed, and the fit-
ness depends on the order in which they appear). In PMX
it is not the values of the genes which are crossed, but the
order in which they appear. Offspring have genes which in-
herit ordering information from each parent. This avoids the
generation of offspring which violate problem constraints.

V. Mutation

Another important GA operator is mutation. Although muta-
tion is important, it is secondary to crossover. Many people
have the erroneous belief that mutation plays the central role
in natural evolution. This is simply not the case. The reason
is that mutation is more likely to produce harmful or even de-
structive changes than beneficial ones. An environment with
high mutation levels would quickly kill off most if not all
of the organisms. In genetic algorithms, high mutation rates
cause the algorithm to degenerate to random search [Fig. 5].

Unlike crossover, mutation is a unary operator - it only acts
on one individual at a time. As bits are being copied from a

Fig. 5. Example of mutation

316



Milena Karova

parent individual to a child. a weighted coin is flipped, if it
comes up TRUE than the bit is inverted before copying. The
probability of the simulated coin coming up TRUE is called
pm – the probability of mutation. As previously stated pm is
small (� � pm � ���).

VI. Inversion

Another genetic operator is called inversion. Inversion is not
used as often as crossover and mutation in most GA’s. Inver-
sion is a process that shifts the locus of one or more gene in a
chromosome from one point to another. This does not change
the meaning of the genotype in the sense that a genotype be-
fore and after inversion will still decode to they same phe-
notype. If this is true, then why bother with inversion at all?
The theory behind inversion is that there are groups of two
or more genes in a chromosome that work together to yield
a high fitness. If these genes are physically close together
than single point crossover is much less likely to disturb these
groups. Although this argument seems reasonable, inversion
used in practice as achieved very mixed results. This is why
many GA’s ignore inversion all together.

VII. Conclusion

GA are original systems based on the supposed functioning
of the Living. The method is very different from classical
optimization algorithms.

� Use of the encoding of the parameters, not the parame-
ters themselves.

� Work on a population of points, not a unique one.

� Use the only values of the function to optimize, not their
derived function or other auxiliary knowledge

� Use probabilistic transition function not determinist
ones.

� Using selection alone will tend to fill tend the popula-
tion with copies of the best individual from the popula-
tion.

� Using selection and crossover operators will tend to
cause the algorithms to converge on a good but sub-
optimal solution.

� Using mutation alone induces a random walk through
the search space.

� Using selection and mutation creates a parallel, noise-
tolerant, hill climbing algorithm.

References

[1] Goldberg D. L., “Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning”, Addison-Wesley, 1989

[2] Goldberg D, “Web Courses”, http://www.engr.uiuc.edu/
OCEE, 2000.

[3] Mitchell M., “An Introduction to Genetic Algorithms”, Mas-
sachusetts Institute of Technology, 1996.

[4] Paechter B., Rankin R., Cumming A., “Timetabling the
Classes of an Entire University with an Evolutionary Algo-
rithm”, Napier University, Edinburgh, Scotland.

[5] Holland, John H., “Adaption in Natural and artificial sys-
tems”, the Mit Press, 1992.

[6] Spears, W. M. and DeJong K., An analysis of multi-point
crossover”, Foundations of Genetic Algorithms, pp. 301-315,
Morgan Kaufmann, 1999.

[7] Syswerda, G., Uniform crossover in genetic algorithms, Pro-
cedings of the Third International Conference on Genetic Al-
gorithms, pp. 2-9, 1995

[8] Ladd, S. R., Genetic Algorithm in C++, 1999-2000

317


