
16-18 October 2003, Sofia, Bulgaria

Attack on the Polyalphabetic Substitution Cipher Using a
Parallel Genetic Algorithm

A. Dimovski1, D. Gligoroski2

Abstract – In this paper is presented an automated attack on the
polyalphabetic substitution cipher. The property which make
this cipher vulnerable, is that it is not sophisticated enough
to hide the inherent properties or statistics of the language of
the plaintext. The attack described here effectively reduces the
complexity of a polyalphabetic substitution cipher attack to that
of a monoalphabetic one, if there is a computer with B process-
ing nodes, where B is the period of the polyalphabetic substitu-
tion cipher.

Keywords – Polyalphabetic substitution cipher, Cryptanalysis,
Parallel genetic algorithm

I. Polyalphabetic Substitution Ciphers

The polyalphabetic substitution cipher is a simple extension
of the monoalphabetic one. The difference is that the mes-
sage is broken into blocks of equal length, say �, and then
each position in the block ��� � � � � �� is encrypted (or de-
crypted) using a different simple substitution cipher key. The
block size � is often referred to as the period of the cipher.

An example of a polyalphabetic substitution cipher is
shown on Table 1. The block size (i.e., �) is chosen to be
three, and Table 1 gives an example key and shows the cor-
responding encryption, it is clear that the decryption process
is reversal of the encryption.

Table 1. Example of the polyalphabetic substitution cipher key and
encryption process

The number of possible keys for a polyalphabetic substi-
tution cipher using an alphabet size of 27 and a block size
of � is 27!�. This is significantly greater than the simple

1Faculty of Natural Sciences and Mathematics, Ss. Cyril and Method-
ius University Arhimedova b.b., PO Box 162, 1000 Skopje, Macedonia adi-
movski@ii.edu.mk

2Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius
University Arhimedova b.b., PO Box 162, 1000 Skopje, Macedonia glig-
oroski@yahoo.com

substitution cipher with 27! possible keys, especially when
the period � is large. The polyalphabetic substitution cipher
is somewhat more difficult to cryptanalyse than the simple
substitution cipher because of the independent keys used to
encrypt successive characters in the plaintext, but it is still
relatively simple to cryptanalyse the polyalphabetic substi-
tution cipher based on the �-gram statistics of the plaintext
language.

So, despite the monoalphabetic substitution cipher where
every bigram (for example A) is mapped to the same en-
crypted bigram each time, this is not the case for the polyal-
phabetic substitution cipher, where the encrypted value of a
bigram is dependent upon two factors: the individual key val-
ues and the position of the characters within the block.

The polyalphabetic substitution cipher is simply a number
of simple substitution ciphers operating on the different po-
sitions within each block. One possible attack strategy, then,
is to solve each of the simple substitution ciphers in parallel.
Here we will use a parallel genetic algorithm to attack the
polyalphabetic substitution cipher.

II. Genetic Algorithms

The genetic algorithm is based upon Darwinian evolution
theory. The genetic algorithm is modelled on a relatively sim-
ple interpretation of the evolutionary process, however, it has
proven to be a reliable and powerful optimisation technique
in a wide variety of applications.

Holland [1] in 1975, was first who proposed the use of ge-
netic algorithms for problem solving. Goldberg [2] and De-
Jong [3] were also pioneers in the area of applying genetic
processes to optimisation. Over the past twenty years numer-
ous applications and adaptations of genetic algorithms have
appeared in the literature.

Consider a pool of genes that have the ability to reproduce,
are able to adapt to environmental changes and, depending on
their individual strengths, have varying lifespans. In such an
environment only the fittest will survive and reproduce giv-
ing, over time, genes that are stronger and more resilient to
conditional changes. After a certain amount of time the sur-
viving genes could be considered “optimal” in some sense.
This is the model used by the genetic algorithm, where the
gene is the representation of a solution to the problem being
optimised.

As with any optimisation technique there must be a
method of assessing each solution. The assessment technique
used by a genetic algorithm is usually referred to as the “fit-
ness function”. The aim is always to maximise the fitness of

318



A. Dimovski, D. Gligoroski

Fig. 1. The Evolutionary Process.

the solutions in the solution pool.
Fig. 1 gives an indication of the evolutionary processes

used by the genetic algorithm. During each iteration of the
algorithm the processes of selection, reproduction and muta-
tion each take place in order to produce the next generation
of solutions. The actual method used to perform each of these
operations is very much dependent upon the problem being
solved and the representation of the solution.

An algorithmic representation of the genetic algorithm is
given in Fig. 2. This description is independent of any so-
lution representation, fitness function, selection scheme, re-

Fig. 2. The Genetic Algorithm

production scheme and mutation scheme. Each of these will
be described in detail where the genetic algorithm has been
applied.

III. A Parallel Genetic Algorithm Attack

We will attack the polyalphabetic substitution cipher using a
number of genetic algorithms running in parallel, each solv-
ing a different part of the problem. Fig. 3 is a pictorial repre-
sentation of this strategy with�GA’s running in parallel and
communicating every �iterations.

Let’s consider a polyalphabetic substitution cipher con-
sisting of � monoalphabetic or simple substitution ciphers.
There will then be � genetic algorithms (call them GA1,
GA2, � � � , GA� ) solving each of the �simple substitution
ciphers. GA� (� � � � ��, which is attempting to find the
key to the cipher of position �, in determining the cost of
each of the solutions in its pool, GA� uses the current best
key from each of its neighbours to find the bigram and tri-
gram statistics.

Before implementing the parallel attack a number of de-
sign problems have to be solved.

A. Suitability Assessment

The technique used to compare candidate keys is to compare
�-gram statistics of the decrypted message with those of the
language (which are assumed known). Equation 1 is a gen-
eral formula used to determine the suitability of a proposed
key ���. Here, � denotes the language alphabet (i.e., for En-
glish, [A, . . . , Z, ], where represents the space symbol),	
and 
 denote known language statistics and decrypted mes-
sage statistics, respectively, and the indices �, � and 
 denote
the unigram, bigram and trigram statistics, respectively. The
values of �, � and � allow assigning of different weights to
each of the three �-gram types.

�� � � �
�

���

���	�
��� �
�

���

���� � �
�

�����

���	�
����� �
�

�����

���

� � �
�

�������

���	�
������� �
�

�������

��� (1)

Spillman [4], in his attack on the simple substitution cipher
use Eq. (2). This equation is based on unigram and bigram
statistics.

�� � � �
�

���

���	�
��� �
�

���

����� �
�

�����

���	�
����� �
�

�����

��� (2)

The only difference between these assessment functions is
the inclusion of different statistics. In general, the larger the
�-grams, the more accurate the assessment is likely to be. It
is usually an expensive task to calculate the trigram statistics
- this is, perhaps, why they are omitted in Eq. (2). The com-
plexity of determining the fitness is ��� �� (where � is the
alphabet size) when trigram statistics are being determined,
compared with��� �� when bigrams are the largest statistics
being used.

319



Attack on the Polyalphabetic Substitution Cipher Using a Parallel Genetic Algorithm

Fig. 3. A parallel genetic algorithm

In the case of the polyalphabetic substitution cipher, with-
out knowledge of the keys for the two adjacent block posi-
tions it is impossible to determine bigram or trigram statis-
tics. To overcome this problem the following strategy is used:

1. Initially only unigram statistics are used in determining
the cost of the solutions in any pool.

2. Every � iterations of each GA, the most fit solution
in the current pool is sent to each of the neighbouring
GA’s. Each GA has knowledge of the entire ciphertext
message so it is able to determine a fitness based on
unigram, bigram and trigram statistics using ciphertext
characters in its position, the position to the left and the
position to the right.

B. The Reproduction Process

The mating function utilised here is similar to the one pro-
posed by Spillman [4], who use a special ordering of the key.
The characters in the key string are ordered such that the most
frequent character in the ciphertext is mapped to the first ele-
ment of the key (upon decryption), the second most frequent
character in the ciphertext is mapped to the second element
of the key, and so on. The reason for this ordering will be-
come apparent upon inspection of the mating function. For
example, the key FGHIJKLMNOPQRSTUV WXYZAB in-
dicates that the most frequent character in the ciphertext rep-
resents a plaintext F; the second most frequent character in

the ciphertext represents a plaintext G, etc.
Given two parents constructed in the manner just de-

scribed, the first element of the first child is chosen to be the
one of the first two elements in each of the parents, which is
most frequent in the known language statistics. This process
continues in a left to right direction along each of the parents
to create the first child only. If, at any stage, a selection is
made which already appears in the child being constructed,
the second choice is used. If both of the characters in the par-
ents for a given key position already appear in the child then
a character is chosen at random from the set of characters
that do not already appear in the newly constructed child.

The second child is formed in a similar manner, except that
the direction of creation is from right to left and, in this case,
the least frequent of the two parent elements is chosen.

Parent 1
FGHIJKLMNOPQRSTUV_WXYZABCDE

Parent 2
CDEFGHIJKLMNOPQRSTUVWXY_ZAB

Child 1
CDEIGHLMNOPQRSTUV_WXYZABFJK

Child 2
CIEFGHLJKLMNOPQRSTUVWXY_ZDB

Fig. 4. The mating process

C. Description of the Algorithm

The implementation of each genetic algorithm proceeds as
follows:

1. Each GA is given language statistics for unigrams, bi-
grams and trigrams, the ciphertext, the block size (��
and this GA’s position within the block, � (1� � �

��, the frequency of inter-GA communications (��, the
maximum number of iterations for the GA (�� and the
solution pool size (��.

2. Generate a random pool of � simple substitution ci-
pher keys for position � and calculate the cost for each
using unigram statistics only. Call this pool of solutions
�CURR.

3. For iteration � (�= 1, . . . , �) do:

a) If � mod ��0 send the best key from �CURR to
each of the neighbouring GA’s (i.e., the GA’s solv-
ing for positions � 1 and � � �). Also receive the
best keys from each of these GA’s.

b) Select � �2 pairs of solutions from �CURR to
be the parents of the new generation. The selection
should be biased towards the most fit of the current
generation (i.e., the keys in �CURR).

c) Mate using each pair of parents with the algo-
rithm given above. This produces � children that
become the new generation (i.e., the solutions of
�NEW).

320



A. Dimovski, D. Gligoroski

d) Mutate each of the children in �NEW using the
same swapping procedure as described in the at-
tack on the simple substitution cipher.

e) Calculate the cost of each of the children in
�NEW using the neighbouring keys obtained in
Step 3a and Equation 3.1.

f) Select the � best keys from the two pools
�CURR and �NEW. Replace the current solu-
tions in �CURR with these solutions.

4. Output the best key from �CURR.

Experimental results obtained from this algorithm are now
given.

IV. Results

It is clear that the parallel implementation of the attack will
perform much more efficiently than a serial version since
the parallel attack is solving each key of the polyalphabetic
cipher simultaneously. The overhead of communication be-
tween the parallel processors is minimal leading to an attack
of the polyalphabetic substitution cipher which would be ex-
pected to complete in roughly the same time as a similar at-
tack on a monoalphabetic substitution cipher.

In this section results based on the amount of ciphertext
provided to the attack are given. The attack was implemented
with a polyalphabetic substitution cipher with a block size of
three. The attack was run 100 times for each of 200, 400,
600, 800 and 1000 known ciphertext characters per key. The
average results for the polyalphabetic substitution cipher are
given in Fig. 5.

These results indicate that the parallel genetic algorithm
is an extremely powerful technique for attacks on polyalpha-
betic substitution ciphers. It could be surmised from the ex-

Fig. 5. Known ciphertext versus percent recovered (key and mes-
sage).

perimental results given above that the attack could be used
on polyalphabetic ciphers with very large periods provided
that sufficient ciphertext and a parallel machine with suffi-
cient nodes to implement the attack are available to the crypt-
analyst.

References

[1] J.Holland. Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press, Ann Arbor, Michigan, 1975.

[2] D.E. Goldberg. Genetic Algorithms in Search. Optimiza-
tion and Machine Learning. Addison Wesely, Reading,
Massechusetts, 1989.

[3] K.A. DeJong. An Analysys of the Behavious of a Class of Ge-
netic Adaptive Systems. University of Michigan Press, Ann
Arbor, Michigan, 1975. Doctoral Disertation.

[4] R.Spillman, M.Janssen, B.Nelson, M.Kepner. Use of a ge-
netic algorithm in the cryptanalysis of simple substitution ci-
phers. Cryptologia, January 1993.

[5] A. Clark and E. Dawson. A parallel genetic algorithm for
cryptanalysis of the polyalphabetic substitution cipher. Cryp-
tologia, April 1997.

321


