(4,2)-Formal Languages

Violeta Manevska¹, Donco Dimovski²

Abstract – The aim of this paper is to define a (4,2)-semigroup automaton on free (4,2)-semigroup, with special attention on (4,2)-formal languages recognizable by them.

Keywords – (4,2)-semigroup, (4,2)-semigroup automaton, (4,2)-language

I. Introduction

Our goal in writing this talk is to examine a (4,2)-formal language and to proof some properties about them. In that means, we are given an example.

II. (4,2)-Semigroups and (4,2)-Semigroup Automata

Here we recall the necessary definitions and known results. From now on, let B be a nonempty set and let (B, \cdot) be a semigroup, where \cdot is a binary operation.

A semigroup automaton is a triple $(S, (B, \cdot), f)$, where S is a set, (B, \cdot) is a semigroup, and $f : S \times B \to S$ is a map satisfying

$$f(f(s, x), y) = f(s, x, y),$$
 (1)

for every $s \in S, x, y \in B$.

The set S is called the set of **states** of $(S, (B, \cdot), f)$ and f is called the **transition function** of $(S, (B, \cdot), f)$.

A nonempty set B with the (4,2)-operation $\{ \} : B^4 \to B^2$ is called a (4,2)-semigroup iff the following equality

$$\{\{xyzt\}uv\} = \{xy\{ztuv\}\}$$
(2)

is an identity for every $x, y, z, t, u, v \in B$. It is denoted with the pair $(B, \{\})$.

Example 1: Let $B = \{a, b\}$. Then the (4,2)-semigroup $(B, \{\})$ is given by Table 1.

This example of (4,2)-semigroup is generated by an appropriate computer program.

A (4,2)-semigroup automaton is a triple $(S, (B, \{\}), f)$ where S is a set, $(B, \{\})$ is a (4,2)-semigroup, and $f : S \times B^2 \to S$ is a map satisfying

$$f(f(s, x, y), z, t) = f(s, \{xyzt\}),$$
(3)

for every $s \in S$, $x, y, z, t \in B$.

The set S is called the set of states of $(S, (B, \{\}), f)$ and f is called the **transition function** of $(S, (B, \{\}), f)$.

Table 1. (4,2)-Semigroup

{ }	
aaaa	(a,a)
aaab	(a,a)
aaba	(a,a)
aabb	(a,a)
abaa	(a,a)
abab	(a,b)
abba	(a,a)
abbb	(a,a)
baaa	(b,b)
baab	(b,b)
baba	(b,a)
babb	(b,b)
bbaa	(b,b)
bbab	(b,b)
bbba	(b,b)
bbbb	(b,b)

2.1⁰. Let $(S, (B, \cdot), \varphi)$ be a semigroup automaton. Then $(S, (B, \{\}), f)$ is a (4,2)-semigroup automaton with (4,2)-operation $\{\}: B^4 \to B^2$ defined by $\{xyzt\} = (x \cdot y \cdot z, t)$ and the transition function $f: S \times B^2 \to S$ defined by

$$f(s, x, y) = f(s, x \cdot y). \tag{[2]}$$

2.2⁰. If $S, (B, \{\}), f$ is a (4,2)-semigroup automaton, then: i) $(B^2, *)$ is a semigroup, where the operation * is defined by $(x, y) * (u, v) = \{xyuv\}$ for every $(x, y)(u, v) \in B^2$;

(ii) $(S, (B^2, *), \psi)$ is a semigroup automaton, where the transition function $\psi : S \times B^2 \to S$ is defined by

$$\psi(s, (x, y)) = f(s, x, y).$$
 ([2])

Example 2: Let $(B, \{\})$ be a (4,2)-semigroup given by Table 1 from Example 1 and $S = \{s_0, s_1, s_2\}$. A (4,2)semigroup automaton $(S, (B, \{\}), f)$ is given by Table 2 and the graph in Fig. 1. This example of (4,2)-semigroup automaton is generated by computer.

III. Free (4,2)-Semigroups and (4,2)-Semigroup Automata on Them

Let B be a nonempty set. We define a sequence of sets $B_0, B_1, ..., B_p, B_{p+1}, ...$ by induction as follows:

 $\begin{array}{l} B_0 = B. \mbox{ Let } \dot{B}_p \mbox{ be defined, and let } A_p \mbox{ be the subset of } B_p \mbox{ of all the elements } u_1^{2+2s}, u_\alpha \in B_p, s \geq 1. \mbox{ Define } B_{p+1} \mbox{ to be } B_{p+1} = B_p \bigcup A_p \times \{1,2\}. \mbox{ Let } B = \bigcup_{p \geq 0} B_p. \mbox{ Then } u \in B \mbox{ if } u \in B \mbox{ or } u = (u_1^{2+2s},i) \mbox{ for some } u_\alpha \in \bar{B}, s \geq 1, i \in \{1,2\}. \end{array}$

¹Violeta Manevska, University "St. Clement Ohridski"-Bitola, Faculty of Technical Sciences, Bitola, Ivo Lola Ribar b.b. 7000 Bitola, Macedonia, e-mail: violeta.manevska@uklo.edu.mk

²Donco Dimovski, Univesity "Sts. Cyril and Methodus"-Skopje, Faculty of Mathematics and Natural Sciences, Institute of Mathematics, e-mail: donco@iunona.pmf.ukim.edu.mk

Table 2. (4,2)-Semigroup

Define a length for elements of \bar{B} , i.e. a map $||: \bar{B} \to N$ (N is a set of positive integers) as follows:

 1^{0} If $u \in B$, then |u| = 1;

 2^{0} If $u = (u_{1}^{2+2s}, i)$, then $|u| = |u_{1}| + |u_{2}| + \cdots + |u_{2+2s}|$. By induction on the length we are going to define a map $\varphi: \overline{B} \to \overline{B}$. For $b \in B$, let $\varphi(b) = b$. Let $u \in \overline{B}$ and suppose that for each $v \in \overline{B}$ with $|v| < |u|, \varphi(v) \in \overline{B}$ and

(1) If $\varphi(v) \neq v$, then $|\varphi(v)| < |v|$;

(2) $\varphi(\varphi(v)) = \varphi(v).$ Let $u = (u_1^{2+2s}, i)$. Then, for each $\alpha, \varphi(u_\alpha) = v_\alpha \in \bar{B}$ is defined, $|\varphi(u_{\alpha})| \leq |u_{\alpha}|$ and $\varphi(\varphi(u_{\alpha})) = \varphi(u_{\alpha})$. Let v = $(v_1^{2+2s}, i).$

(i) If for some α , $u_{\alpha} \neq v_{\alpha}$, then $|v_{\alpha}| < |u_{\alpha}|$, and so, |v| < |u|. In this case let $\varphi(u) = \varphi(v)$.

Because |v| < |u|, it follows that $\varphi(v)$ is defined, and moreover, (1) and (2) imply that

$$\begin{aligned} |\varphi(u)| &= |\varphi(\nu)| \le |v| < |u|, \ \varphi(u) \ne u \text{ and} \\ \varphi(\varphi(u)) &= \varphi(\varphi(v) = \varphi(v) = \varphi(u). \end{aligned}$$

(ii) Let $u_{\alpha} = v_{\alpha}$ for each α . Then u = v. Suppose that there is $j \in \{0, 1, \dots, 2s\}$ and $r \geq 1$, such that $u_{j+v} =$ (w_1^{2r+2}, i) for each $v \in \{1, 2\}$ and let t be the smallest such j. In this case, let

$$\varphi(u) = \varphi(u_1^t w_1^{2r+2} u_{t+3}^{2s+2}, i).$$

Because $|(u_1^t w_1^{2r+2} u_{t+3}^{2s+2}, i)| < |u|$ it follows that $\varphi(u)$ is well defined, and moreover, (1) and (2) imply that

$$\varphi(u) \neq u, \ |\varphi(u)| < |u| \quad \text{and} \quad \varphi(\varphi(u)) = \varphi(u).$$

(iii) If $\varphi(u)$ cannot be defined by (i) or (ii), let $\varphi(u) = u$. In this case,

$$\varphi(\varphi(u)) = \varphi(u) = u \quad \text{and} \quad |\varphi(u)| = |u|$$

The above discussion and (i), (ii) and (iii) complete the inductive step, and so we have defined a map $\varphi : \overline{B} \to B$. Moreover, we have proved the following:

Lemma:

(a) For $b \in B$, $\varphi(b) = b$; (b) For each $u \in \overline{B}$, $|\varphi(u)| \le |u|$; (c) For $u \in \overline{B}$, if $\varphi(u) \neq u$, then $|\varphi(u)| < |u|$; (d) For each $u \in \overline{B}$, $\varphi(\varphi(u)) = \varphi(u)$. Now, let $Q = \varphi(\overline{B})$. By Lemma (d),

 $Q = \{ u | u \in \overline{B}, \varphi(u) = u \}.$

Define a map []: $Q^4 \rightarrow Q^2$, by $[u_1^4] = (v_1^2) \Leftrightarrow v_i =$ $\varphi(u_1^4, i)$ for each $i \in \{1, 2\}$.

Because $u_i \in Q$, it follows that $(u_1^4, i) \in \overline{B}$, and so $\varphi(u_1^4, i) \in Q$ for each $i \in \{1, 2\}$. Hence [] is well defined.

Theorem: (Q, []) is a free (4,2)- semigroup with a basis B. ([1])

Let $S, (B, \{\}), f)$ be a (4,2)-semigroup automaton.

Now, we define a sequence of maps $\psi_0, \psi_1, ..., \psi_p$, ψ_{p+1}, \dots for a sequence of sets $B_0, B_1, \dots, B_p, B_{p+1}, \dots$ by induction as follows:

 $\psi_0: B_0 \to B_0$ with $\psi_0(b) = b$, for each $b \in B_0$; $\psi_1: B_1 \to B_0$ with $\psi_1(b_1^n, i) = \{b_1^n\}_i$; $\psi_2: B_2 \to B_0$ with $\psi_2(u_1^n, i) = \{\psi_1(u_1) \dots \psi_1(u_n)\}_i$; $\psi_p: B_p \to B_0 \text{ with } \psi_p(u_1^n, i) = \{\psi_{p-1}(u_1) \dots \psi_{p-1}(u_n)\}_i;$

Because $\bar{B} = \bigcup_{p \ge 0} B_p$, we define a map $\psi : \bar{B} \to B_0$ with

 $\psi(u) = \psi_p(u)$ for $u \in \overline{B}$ and $|u| \leq p$. Now we will prove that ψ is well defined. If

$$\begin{split} & u = (u_1^r(w_1^{2+2s},i_1)(w_1^{2+2s},i_2)u_{r+3}^{2+2t},i), \\ & v = (u_1^rw_1^{2+2s}u_{r+3}^{2+2t},i) \end{split}$$

and $\varphi(u) = \varphi(v)$, we have to prove that $\psi(u) = \psi(v)$. We have

$$\begin{split} \psi(u) &= \psi_p(u) = \\ &= \psi_p(u_1^r(w_1^{2+2s}, i_1)(w_1^{2+2s}, i_2)u_{r+3}^{2+2t}, i) = \\ &= \{\psi_{p-1}(u_1)...\psi_{p-1}(u_r)\psi_{p-1}(w_1^{2+2t}, i_1)\psi_{p-1}(w_1^{2+2s}, i_2) \\ \psi_{p-1}(u_{r+3})...\psi_{p-1}(u_{2+2t})\}_i = \\ &= \{\psi_{p-1}(u_1)...\psi_{p-1}(u_r)\{\psi_{p-2}(w_1)...\psi_{p-2}(w_{2+2s})\}_{i_1}... \\ \{\psi_{p-1}(w_1)...\psi_{p-2}(w_{2+2s})\}_{i_2}\psi_{p-1}(u_{r+3})...\psi_{p-1}(u_{2+2t})\}_i = \\ &= \{\psi_{p-1}(u_1)...\psi_{p-1}(u_r)\psi_{p-1}(w_1)...\psi_{p-1}(w_{2+2s}) \\ \psi_{p-1}(u_{r+3})...\psi_{p-1}(u_{2+2t})\}_i, \end{split}$$

Also,

$$\begin{split} \psi(v) &= \psi_p(v) = \psi_p(u_1^r w_1^{2+2s} u_{r+3}^{2+2t}, i) = \\ &= \{\psi_{p-1}(u_1) \dots \psi_{p-1}(u_r) \psi_{p-1}(w_1) \dots \psi_{p-1}(w_{2+2s}) \\ &\psi_{p-1}(u_{r+3}) \dots \psi_{p-1}(u_{2+2t}) \}_i. \end{split}$$

Hence $\psi(u) = \psi(v)$. On the other hand, $Q = \varphi(\overline{B})$, so it follows that the restriction of ψ on Q is well defined.

Now again, we define a sequence of maps $\tau_0, \tau_1, ..., \tau_p$, τ_{p+1}, \dots for a sequence of sets $B_0, B_1, \dots, B_p, B_{p+1}, \dots$ by induction as follows: $\times B^2 \rightarrow S$ with σ (a. e. e.) .

$$\begin{aligned} &\tau_0: S \times B_0^- \to S \text{ with } \\ &\tau_1: S \times B_1^2 \to S \text{ with } \\ &\tau_1(s, (u_1^n, i), (v_1^k, j)) = f(s, \psi_1(u_1^n, i), \psi_1(v_1^k, j)); \end{aligned}$$

 $au_2: S \times B_2^2 \to S$ with

$$\tau_2(s, (u_1^n, i), (v_1^k, j)) = f(s, \psi_2(u_1^n, i), \psi_2(v_1^k, j))$$

 $\tau_p: S \times B_p^2 \to S$ with

$$\tau_p(s, (u_1^n, i), (v_1^k, j)) = f(s, \psi_p(u_1^n, i), \psi_p(v_1^k, j)).$$

Now we define a map τ for the sequence of maps $\tau_0, \tau_1, ..., \tau_p, \tau_{p+1}, ...$ by $\tau : S \times \overline{B}^2 \to S$, so that $\tau|_{B_p} = \tau_p$ and

$$\begin{aligned} \tau(s,(u_1^n,i),(v_1^k,j)) &= \tau_p(s,(u_1^n,i),(v_1^k,j)) = \\ &= f(s,\psi_p(u)1^n,i),\psi_p(v_1^k,j)) = f(s,\psi(u_1^n,i),\psi(v_1^k,j)). \end{aligned}$$

Because ψ is well defined, it follows that τ is well defined. On the other hand, $Q = \varphi(\bar{B})$ so $\bar{\varphi}$ denotes the map $\bar{\varphi} : S \times Q^2 \to S$ defined by

$$\begin{split} \bar{\varphi}(s,(u_1^n,i),(v_1^k,j)) &= \tau(s,(u_1^n,i),(v_1^k,j)) = \\ &= f(s,\psi(u_1^n,i),\psi(v_1^k,j)). \end{split}$$

Moreover, $(S, (Q, []), \bar{\varphi})$ is a (4,2)-semigroup automaton, where (Q, []) is a free (4,2)-semigroup with a basis *B*.

IV. Recognizable (4,2)-Languages

Any subset $L^{(4,2)}$ of the universal language $Q^* = \bigcup_{p \ge 1} Q^p$, where Q is a free (4,2)-semigroup with a basis B, is called a **(4,2)-language (formal (4,2)-language)** on the alphabet B.

(4,2)-language (formal (4,2)-language) on the alphabet B. A (4,2)-language $L^{(4,2)} \subseteq Q^*$ is called **recognizable** if there exists:

(1) a (4,2)-semigroup automaton $(S, (B, \{\}), f)$, where the set S is finite;

(2) an initial state $s_0 \in S$;

(3) a subset $T \subseteq S$ such that

$$L^{(4,2)} = \{ w \in Q^* | \bar{\varphi}(s_0, (w,1), (w,2)) \in T \},\$$

where $(S, (Q, []), \overline{\varphi})$ is the (4,2)-semigroup automaton constructed above, for the (4,2)-semigroup automaton $(S, (Q, \{\}), f)$.

We also say that the (4,2)-semigroup automaton $(S, (Q, \{ \}), f)$ recognizes $L^{(4,2)}$, or that $L^{(4,2)}$ is recognized by $(S, (Q, \{ \}), f)$.

Example 3: Let $(S, (Q, \{ \}), f)$ be a (4,2)-semigroup automaton given in Example 2. We construct the (4,2)semigroup automaton $(S, (Q, []), \bar{\varphi})$ for the (4,2)-semigroup automaton $(S, (Q, \{ \}), f)$. A (4,2)-language $L^{(4,2)}$, which is recognized by the (4,2)-

A (4,2)-language $L^{(4,2)}$, which is recognized by the (4,2)semigroup automaton $(S, (Q, []), \bar{\varphi})$, with initial state s_0 and terminal state s_1 is

$$L^{(4,2)} = \{ w \in Q^* | w = w_1 w_2 \dots w_{2q},$$

where

$$w_{l} = \begin{cases} (u_{1}^{n}, i), \ n \ge 4, \ u_{\alpha} \in Q\\ (a^{*}b^{*})^{*} \end{cases}, \ l \in \{1, 2, ..., q\}, \ q \ge 3$$

a) If i = 1, then:

a1)
$$(u_1^n, 1) = a$$
, where
 $\psi_{p-1}(u_1)...\psi_{p-1}(u_n) = a(a \cup b)(a^t b^j)^*$,
a2) $(u_1^n, 1) = b$, where
 $\psi_{p-1}(u_1)...\psi_{p-1}(u_n) = b(a \cup b)(a^t b^j)^*$;
b) If $i = 2$, then
b1) $(u_1^n, 2) = a$, where
 $\psi_{p-1}(u_1)...\psi_{p-1}(u_n) = (ba)^+ \cup (a(a \cup b)(a^t b^j)^* \setminus (ab)^+)$,
b2) $(u_1^n, 2) = b$, where

$$\psi_{p-1}(u_1)...\psi_{p-1}(u_n) = (ab)^+ \cup (b(a \cup b)(a^t b^j)^* \setminus (ba)^+),$$

where $t + j = 2k, t, j \in \{0, 1, 2, ...\}, k > 1$, and finally

$$\psi_{-}(w_{1}) = \psi_{-}(w_{2}) =$$

$$= (ba)^* (bb \cup a(a \cup b))((a \cup b)(a \cup b))^* = (ba)^* (aa \cup ab \cup bb)(aa \cup ab \cup ba \cup bb)^* \}.$$

4.1⁰. Let $L^{(4,2)}$ be a (4,2)-language on the set B recognized by (4,2)-semigroup automaton $(S, (Q[]), \bar{\varphi})$. Let $(S, (Q, []), \bar{\varphi})$ be a (4,2)-semigroup automaton eith initial state s_0 and a set of terminal states $T \subseteq S$. Then $\tilde{L}^{(2,1)} \subseteq L^{(4,2)}$ for any language $L^{(4,2)}$, which is recognized by the semigroup automaton $(S, (Q^2, *), \psi)$ with the same initial state and the same set of terminal states, where $\psi : S \times Q^2 \to S$ is a transition function defined by $\psi(s, (u, v)) = \bar{\varphi}(s, u, v)$ and $\tilde{L}^{(2,1)} = \{\tilde{w} | w \in L^{(2,1)}\}$.

Proof: $L^{(4,2)}$ is a recognizable (4,2)-language on the set B by the (4,2)-semigroup automaton $(S, (Q, []), \overline{\varphi})$ with initial state s_0 and a set of terminal states $T \subseteq S$, so

$$L^{(4,2)} = \{ w \in Q^* | \bar{\varphi}(s_0, w) \in T \}.$$

By Proposition 2.2⁰, $(S, (Q^2, *), \psi)$ is a semigroup automaton. It recognizes a language $L^{(2,1)}$ with a same initial state s_0 and a same terminal states $T \subseteq S$, so it is of the form

$$L^{(2,1)} = \{ w \in (Q^2)^* | \psi(s_0, w) \in T \}.$$

Let $w \in L^{(2,1)}$. It follows that $w \in (Q^2)^*$ and $\psi(s_0, w) \in T$. That

$$\bar{\varphi}(s_0, (\tilde{w}, 2), (\tilde{w}, 2)) = \bar{\varphi}(s_0, w) = \psi(s_0, w) \in T.$$

Thus $\tilde{w} \in L^{(4,2)}$, i.e. $\tilde{L}^{(2,1)} \subset L^{(4,2)}$.

4.2⁰. Let $L^{(2,1)}$ be a recognizable language on the set B by a semigroup automaton $(S, (B, || ||), \xi)$ with an initial state s_0 and a set of terminal states $T \subseteq S$, and $(S, (B, \{ \}), f)$ be a (4,2) semigroup automaton constructed by a semigroup automaton $(S, (B, || ||), \xi)$. Let $f : S \times B^2 \to S$ be a transition function defined by $f(s, x, y) = \xi(s, x, y)$. Then $L^{(2,1)} \subseteq L^{(4,2)}$, where $L^{(4,2)}$ is a recognizable (4,2) language on the set B by the (4,2)-semigroup automaton $(S, (Q, []), \bar{\varphi})$ with initial state $s_0 \in S$ and a set of terminal states $T \subseteq S$.

Proof: A language $L^{(2,1)}$ is recognizable by a semigroup automaton $(S, (B, || ||), \xi)$ with an initial state $s_0 \in S$ and a set of terminal states $T \subseteq S$, so

$$L^{(2,1)} = \{ w \in B^* | \xi(s_0, w) \in T \}.$$

By Proposition 2.1^o $(S, (B, \{ \}), f)$ is a (4,2)-semigroup automaton. We construct a (4,2) semigroup automaton

 $(S,(Q,[\]),\bar{\varphi}),$ where $Q=\varphi(\bar{B})$ and $\bar{\varphi}:S\times Q^2\to S$ is a transition function defined by

$$\begin{split} \bar{\varphi}(s,(y_1^n,i),(v_1^k,j)) &= \varphi_p(s,(u_1^n,i),(v_1^k,j)) = \\ &= f(s,[\bar{u}_i^n]_i,[\bar{v}_1^k]_i), \end{split}$$

where

$$\psi_p(u_1^n, i) = [\psi_{p-1}(u_1) \dots \psi_{p-1}(u_n)]_i = [\bar{u}_1^n]_i,$$

$$\psi_p(v_1^k, j) = [\psi_{p-1}(v_1) \dots \psi_{p-1}(v_k)]_j = [\bar{v}_1^k]_j$$

It follows that a recognizable (4,2)-language $L^{(4,2)}$ on the set B by (4,2) semigroup automaton $(S, (Q, []), \overline{\varphi})$, with initial state $s_0 \in S$ and a set of terminal states $T \subseteq S$ is of the form

$$L^{(4,2)} = \{ w \in Q^* | \bar{\varphi}(s_0, w) \in T \}.$$

Let $w \in L^{(2,1)}$ and $|w| \ge 2$. Then

$$\bar{\varphi}(s_0, (w, 1), (w, 2)) = \bar{\varphi}(s_0, w) = \xi(s_0, w) \in T.$$

Thus $w \in L^{(4,2)}$, i.e. $L^{(2,1)} \subset L^{(4,2)}$.

V. Conclusion

The results was given in this paper, are of the scientific interest, because there was defined a (4,2)-languages as a consequence of the generalization of the semigroup automata in case (4,2). Also, here was given the connection between (2,1)-languages and (4,2)-languages.

References

- [1] D. Dimovski, "Free vector valued semigroups", Proc. Conf. "Algebra and Logic", Cetinje, (1986), 55-62.
- [2] D. Dimovski, V. Manevska, "Vector valued (n+k)-formal languages", Proc. 10th Congress of Yugoslav Mathematicians, Belgrade, (2001), 153-159.
- [3] V. Manevska, D. Dimovski, "Properties of the (3,2)-languages recognized by (3,2)-semigroup automata", MMSC, Borovets, (2002), 368-373