
16-18 October 2003, Sofia, Bulgaria

Using Decomposition to Produce High-Level System
Organization of Software Source Code

Violeta T. Bojikova1

Abstract – Software clustering techniques are useful for extract-
ing architectural information about a system directly from its
source code structure. In this paper is discussed the evaluation
problem of clustering algorithms.

Keywords – software clustering algorithms, program decompo-
sition, program restructuring

I. Introduction

Software architecture is a critical asset to a project due to the
ever increasing complexity and the demand to reduce main-
tenance cost for evolution. One of the areas in software archi-
tecture is architecture recovery through reverse engineering
of existing implementations.

Clustering techniques have been used in many disciplines
to support grouping of similar objects of a system. Clustering
analysis is one of the most fundamental techniques adopted
in science and engineering. The primary objective of cluster-
ing analysis is to facilitate better understanding of the obser-
vations and the subsequent construction of complex knowl-
edge structure from features and object clusters. Examples
include botanic species and mechanical parts. The key con-
cept of clustering is to group similar things into clusters, such
that intra-cluster similarity or cohesion is high, and inter-
cluster similar or coupling is low. Coupling has great impact
on many quality attributes, such as maintainability, verifia-
bility, flexibility, portability, reusability, interoperability, and
expandability. The main objective of clustering is similar to
that of software partitioning.

Most existing clustering approaches often are limited to
architecture recovery activity in the reverse engineering pro-
cess only. But clustering techniques can be applied to soft-
ware during various life-cycle phases. Clustering techniques
can be used to effectively support both software architecture
partitioning at the early phase in the forward engineering pro-
cess and software architecture recovery of legacy systems
in the reverse engineering process. Lung demonstrated that
clustering techniques can also be used to effectively facilitate
software architecture restructuring instead of simply being
used for software architecture recovery of existing systems.

Because the structure of software systems are usually
not documented accurately, researchers have expended a
great deal of effort studying ways to recover design artifacts
from source code. Since many software systems are large
and complex, appropriate abstractions of their structure are
needed to simplify program understanding and restructuring.

1Violeta Bojikova is with the Department of Computer Science
Varna Technical University, Bulgaria, e-mail: vbojikova@yahoo.com, bo-
jikov@nat.bg

For small systems, source code analysis tools can easy
extract the source level components (e.g., modules, classes,
functions) and relations (e.g., method invocation, function
calls, inheritance) of a software system. For large systems
there is significant value in identifying the abstract (high-
level) entities, and then modeling those using architectural
components such as subsystems and their relations.

Subsystems generally consist of a collection of source
code resources that collaborate with each other to implement
a feature or provide a service to the rest of the system. Typi-
cal resources found in subsystems include modules, classes,
and possibly, other subsystems. Subsystems facilitate pro-
gram understanding by treating sets of source code resources
as high-level entities.

The entities and relations needed to represent software
architectures (high-level component) are not found in the
source code. Thus, without external documentation, we seek
other techniques to recover a reasonable approximation of
the software architecture using source code information. Re-
searchers in the reverse engineering community have applied
a variety of software clustering approaches to address this
problem.

Many of the clustering techniques published in the lit-
erature can be categorized by the way they create clus-
ters. These techniques determine clusters (subsystems) us-
ing source code component similarity concept analysis, opti-
mization [144,145], or information available from the system
implementation such as module, directory, and/or package
names.

II. Fundamental Questions Pertaining to the
Software Clustering Problem

1. How can a software engineer determine – within a reason-
able amount of time and computing resources – if the solu-
tion produced by a software clustering algorithm is good or
not?

2. Can an algorithm be created that guarantees a solution –
within a reasonable amount of time and computing resources
– that is close to the ideal solution?

From a practical aspect, the answers to these questions are
important because they provide increased confidence to soft-
ware engineers who analyze systems. From a theoretical as-
pect, these answers are important because they provide an
approximation algorithm to a known NP-Hard problem, in
addition to a method for comparing any solution, even those
produced by other algorithms that use the same clustering

329

Using Decomposition to Produce High-Level System Organization of Software Source Code

criterion we do (i.e., coupling-cohesion tradeoff), to the op-
timal solution.

III. Sub-Optimal Decomposition Algorithm –
SOAD

In this paper is presented an evaluation of a clustering algo-
rithm, which first version is presented in [5-7] and which uses
heuristic search technique to determine the subsystems of a
software system. The goal of the software clustering process
is to partition the graph model – MDG of the system into a
set of clusters such that the clusters represent subsystems.

Since graph partitioning is known to be NP-hard, obtain-
ing a good solution by random selection or exhaustive explo-
ration of the search space is unlikely. SOAD overcomes this
problem by using heuristic-search techniques.

Formalization: The MDG � ����� is a directed graph
where the source code components are modeled as nodes,
and the source code dependencies are modeled as edges:

– � is finite set of components (nodes), where � � �� �
is the number of components – classes, modules, files, pack-
ages, etc.;

– � � � � � is the set of ordered pairs ���� ��� that
represent the source-level relationships between module ��
and module�� (inherit, import, include, call, instantiate, etc.)

Once the MDG is created, SOAD produce an initially par-
tition of the MDG and evaluates the “quality” of this partition
using a fitness function that is called Modularization Quality
(�) [doklad]. After producing the initially solution from the
search space, SOAD improves it using iterative algorithm.
Given that the fitness of an individual partition can be mea-
sured, heuristic search algorithms are used in the iterative
clustering phase in an attempt to improve the MQ of the ini-
tially generated partition. SOAD implement a hill-climbing
algorithm.

The Goal of SOAD is to “Find a good partition of the
MDG.”

A partition is the decomposition of a set of elements (i.e.,
all the nodes of the graph) into mutually disjoint clusters.

A “good partition” is a partition where:
– highly interdependent nodes are grouped in the same

clusters;
– independent nodes are assigned to separate clusters The

� function is designed to penalize excessive inter-cluster cou-
pling. � increases as the inter-edges (i.e., external edges that
cross cluster boundaries) increase.

Modularization Quality and restrictive condition. Modu-
larization Quality ��� is a measurement of the “quality” of a
particular MDG partition.

The assumption is: “Well designed software systems are
organized into cohesive clusters that are loosely intercon-
nected”.

The weight – �� of each cluster � � MDG with �� � �
components (nodes) corresponds to the restrictive condition
��, where �� – is the label of node �� and present the num-
ber of node’s elements (i.e. functions):

�� �
�

�����

�� ����	

The value of “�”, where ��� is the number of inter-edges
(i.e., external edges that cross cluster boundaries) between
nodes �� and �� is calculated as follow:

� �
�

���������

�

���������

��� � ���� �
 �� �	

� represents the number of clusters in the current partition
of the MDG.

IV. Comparing the Results Produced by
Software Clustering Algorithms

Now that a plethora of approaches to software clustering ex-
ist, the validation of clustering results is starting to attract the
interest of the Reverse Engineering research community. Nu-
merous clustering approaches have been proposed in the re-
verse engineering literature, each one using a different algo-
rithm to identify subsystems. Since different clustering tech-
niques may not produce identical results when applied to
the same system, mechanisms that can measure the extent
of these differences are needed.

Many of the clustering techniques published in the litera-
ture present case studies, where the results are evaluated by
the authors or by the developers of the systems being stud-
ied. This evaluation technique is very subjective. Recently,
researchers have begun developing infrastructure to evalu-
ate clustering techniques, in a semi-formal way, by propos-
ing similarity measurements [1-3]. These measurements en-
able the results of clustering algorithms to be compared to
each other, and preferably to be compared to an agreed upon
“benchmark” standard. Note that the “benchmark” standard
needn’t be the optimal solution in a theoretical sense. Rather,
it is a solution that is perceived as being “good enough”.

Existing clustering techniques neither provide a guarantee
on the quality of their solutions nor any indication of a solu-
tion’s proximity to the optimum. Bunch [1,3], for example,
uses several methods to find solutions, such as hill-climbing
and genetic algorithms. Hill-climbing only guarantees local
optimality, but makes no guarantees of global optimality.

Genetic algorithms are another type of search, like hill
climbing, that does not guarantee the quality of its solution,
not even with respect to local extreme. Neither method in-
dicates how good a solution is with respect to the optimal
solution. Not being able to meet either of these criteria is un-
satisfactory.

Researchers have begun formulating ways to measure the
differences between system decompositions.

For example, Anquetil et al. developed a similarity mea-
surement based on Precision and Recall.

Much of the research on measuring the similarity between
decompositions only considers the assignment of the sys-
tem’s modules to subsystems. Mancoridis and al. [1] argue
that a more realistic indication of similarity should consider
how much a module depends on other modules in its subsys-
tem, as well how much it depends on the modules of other
subsystems.

Mojo measures the distance between two decompositions
of a software system by calculating the number of operations

330

Violeta T. Bojikova

needed to transform one decomposition into the other [4].
The transformation process is accomplished by executing a
series of Move and Join operations. In MoJo, a Move opera-
tion involves relocating a single resource from one cluster to
another, and a Join operation takes two clusters and merges
them into a single cluster.

Tzerpos and Holt also introduce a quality measurement
based on MoJo. The MoJo quality measurement normalizes
MoJo with respect to the number of resources in the system.
Given two decompositions, and �, of a system with �
resources, the MoJo quality measurement is degfined as:

MoJoQuality���� � ��	MoJo�������
 ���	

Koschke and Eisenbarth present in 2000 a framework for ex-
perimental evaluation of clustering techniques [2]. The goal
this evaluation is to have an oracle to compare the results of
automatic techniques.

Let software engineers detect modules 	� references
�

Let automatic techniques propose modules 	� candi-
dates �

Let compare candidates to references

– identify immediate corresponding candidates and refer-
ences 	� good match

– identify corresponding submodules; i.e., a module cor-
responds only to a part of another module 	� O.k.
match

– measure accuracy of correspondences 	� detection
quality

Types of matchs:

1. Good match � � ��:
Iff �elements��� elements������elements���

� elements���� �� �, where � is a tolerance parameter.

� if � � �, � and � must be the same

� more pragmatically, � � �	

– � and � overlap at 70%

– ��� �� �� ���������	
��� �� ��, overlap is ��� � �	

– ��� �� �� �� no � �	
��� �� �� ��, overlap is �� � �	�

2. Part-of matches
Matching relation � � �� :
Iff �elements��� elements�� ����elements���� �� �,

where � is tolerance parameter as above � is part of �

Fig. 1. Mutually part-of matches

3. Mutually part-of matches

� � � ��� � � �� � � � ��

� but not: � � �� � � � �� � � � ��

� yet, there is a distinct correspondence between� and �
(fig. 1): if � � �� � � � ��

Overlap����� � �� ����� ��� �
�	

� and � are a mutually part-of match:

iff � � �� � � � ��

– mutually part-of matches are part-of matches

– good matches are mutually part-of matches

Part-of and mutually part-of are O.k. matches

4. The accuracy of each match is:

� ����� � overlap������

where: overlap����� � �� ����� � ��.
Accuracy � ��� for class of matches is:

� ��� �

�
���	���

� ���� ���

�� �
	

5. There are multiple aspects of detection quality [2]:
– Numbre of false positives and true negatives
– Granularity of matches = good matches/all matches
– Accuracy of each match and the class of matches

6. SOAD is evaluated using the Koschke similarity technique
and the Mojo distance evaluation. The result, produced by
SOAD are stable. Ideally, the results produced by SOAD
could be compared to an optimal reference solution, but this
option is not possible since the graph partitioning technique
used by SOAD for software clustering is NP-Hard.

In the case is used the benchmark standard. SOAD has
been tested for open-source software systems, which has

Fig. 2. Accuracy results

331

Using Decomposition to Produce High-Level System Organization of Software Source Code

Fig. 3. Distance evaluation

been used by other clustering algorithms [3]: Apache Reg-
ular Expression Class Library (RegExp Package), Mini Tu-
nis, Small Compiler, File System, PlafTester Program etc.
All systems are small or middle size. We dispose with the
MDG graph for these systems and with the reference par-
tition (i.e. a partition presented by the experts, or by other
techniques for clustering, or in the design documentation).

Figures 2,3 show the clustering results and the value of
the accuracy of each class of matches (initial partition and
sub-optimal partition). The results depend from the graph
strength (number of nodes and edges).

V. Conclusion

Most interesting software systems are large and complex and,
as a consequence, understanding their structure is difficult.
Such software systems are composed of many resources.
The structure of these systems can be represented as a graph
where the nodes are the resources and edges are the relations
between the resources.

Without automated assistance the software structure graph
provides little value when being used to understand the de-
sign of practical systems because of its large number of nodes
and edges.

Decomposing source code components and relations into
subsystem clusters is an active area of research. The primary
goal of clustering tools is to propose subsystems that expose
abstractions of the software structure. However, the various
clustering tools use different algorithms, and make different
assumptions about how subsystems are formed.

Now that many clustering techniques exist, some re-
searchers have turned their attention to evaluating their rel-
ative effectiveness. There are several reasons for this: Many
of the papers on software clustering formulate conclusions
based on case studies, or by soliciting opinions from the au-
thors of the systems presented in the case studies.

Much of the research on measuring the similarity between
decompositions only considers the assignment of the sys-
tem’s modules to subsystems. We argue that a more realistic
indication of similarity should consider how much a mod-
ule depends on other modules in its subsystem, as well how
much it depends on the modules of other subsystems.

When decompositions are compared, all source code re-
sources tend to be treated equally. Conclusions are often for-
mulated based on the value of a similarity or distance mea-
surement.

In the paper we examine two similarity measurements that
have been used to compare decompositions.

We show the results of our study of similarity measure-
ments. The conclusion is that SOAD shows good results re-
ferring to these measurements.

References

[1] Comparing the Decompositions Produced by Software Cluster-
ing Algorithms using Similarity Measurements, Spiros Man-
coridis and Brian Mitchell IEEE Proceedings of the 2001 In-
ternational Conference on Software Maintenance (ICSM’01).
IEEE.

[2] Rainer Koschke and Thomas Eisenbath, “A Framework for ex-
perimental evaluation of clustering techniques”, International
Workshop on Program Comprehension, June, 2000.

[3] Search Based Reverse Engineering, by B. S. Mitchell, S. Man-
coridis, M. Traverso. In the ACM Proceedings of the 2002 In-
ternational Conference on Software Engineering and Knowl-
edge Engineering (SEKE’02), Ischia, Italy, July, 2002. pp. 431-
438.

[4] Mojo: A distance metric for software clustering. V. Tzerpos and
R. C. Holt. In Proc. Working Conf. on Reverse Engineering,
Atlanta - 1999, pp.187-193.

[5] Software Architecture Decomposition, Violeta Bojikova, M.
Mitev, Proceedings of the 14th Int’l Conference SAER’2000,
Varna, 2000, pp. 173-177.

[6] An Approach to measure the Cost of Program restructuring,
Violeta Bojikova, M. Karova, Proceedings of papers, Volume
2, pp 669-671, 2002, Nish, Yugoslavia

[7] Elementary Operations and Program Restructuring,
V.Bojikova, M.Karova, Proceedings of the Int’l Confer-
ence Tehnonav 2002, Constanca, June-2002, pp.192-197.

332

