
16-18 October 2003, Sofia, Bulgaria

An Approximation Algorithm for Scheduling Problem on a
Finite Number of Processors with Communication Delays�

Vassil G. Guliashki1

Abstract – A polynomial approximation algorithm for schedul-
ing a finite number of tasks on m identical processors with
nonzero communication times between the processors is pre-
sented. The created algorithm is compared with other approxi-
mation algorithms on the grounds of theoretical results for their
worst-case performance. The possibility for anomalous behav-
ior is commented.

Keywords – scheduling, makespan, communication delays

I. Introduction

During the last two decades the interest in solving problems
for scheduling a finite number of tasks on limited number of
processors grows up rapidly. The real problems of this kind
require consideration of communication delays between two
consecutive tasks when they are not assigned performance to
one and the same processor. For convenience we will assume
that a precedence relation between two tasks � and � is avail-
able if task � needs data from task � before being started.

We will consider the problem for making a schedule to
proceed � tasks on � processors, for which the task dupli-
cation is not allowed, the communication between any two
processors is possible and the communication delays depend
only on the corresponding tasks. The precedence constraints
and the processing times are arbitrary. The objective is to find
the schedule that minimizes the overall finishing time, or the
“makespan”. Let � denotes the ratio of the greatest communi-
cation delay to the smallest processing time. We will assume
that the greatest communication time between any two dif-
ferent processors is smaller than the processing time, needed
for the completion of the smallest task, i.e. � � �. This prob-
lem is known as Small Communication Time problem (SCT
problem).

There are surveys studying scheduling problems (see for
example [1,7,13]), where some theoretical results about this
problem are presented. As it is mentioned in [1] Picouleau
has proven in 1992 that this problem is �� -hard. Jakoby and
Reischuk have shown in [6] that the special case with unlim-
ited number of processors and unit processing time is �� -
hard even when the in-degree of each node is at most two. Us-
ing a similar reduction, they also proved that for a binary tree,
unit processing times and arbitrary communication times the
problem is �� -complete. For fixed � � �, no algorithms
which ensure optimal schedules are known yet. For this rea-
son different kind of approximation algorithms have been de-

�This study is partly supported by the Ministry of Education and Science,
National Science Fund, contract No. I-1203/2002, Sofia, Bulgaria.

1Vassil G. Guliashki is with the Institute of Information Technologies,
Bulgarian Academy of Sciences, Bulgaria, Sofia 1113, “Acad. G. Bontchev”
Street, Bl. 29 A, E-mail: vgoul@iinf.bas.bg, vggul@yahoo.com .

veloped (see for example [2,4,5,9,11,12]). The parallelism of
multiprocessor problem in combination with the communi-
cation delays causes difficulties at the design of approxima-
tion algorithms, because the problem is combinatorial one.
The worst-case performance of all of them is as bad as possi-
ble (see [4]), especially if a great number of processors is as-
sumed. The performance ratio for the known approximation
algorithms varies around 2 and tends to 3 when � – the num-
ber of processors – is fixed. The best known approximation
algorithms for this problem are those presented in [9] and [4]
with performance ratio 7/3, and ���� ������, correspond-
ingly. For the problem with unlimited number of processors
Hanen and Munier (see [4]) have created an approximation
algorithm with 4/3 performance ratio. The aim of this pa-
per is to present the approximation algorithm AASCT, which
could to a great extent avoid the anomalous behavior, arising
when the number of processors increases, and from another
side could improve the performance of approximation algo-
rithm presented in [4]. The time complexity of AASCT is
��	��������.

II. Preliminaries

First of all will be defined the SCT task system. With this
aim we will introduce some symbols. The set of � tasks will
be denoted by
 and the corresponding processing times
by ��� � ��. Let � � �
��� be a directed acyclic graph
(DAG). An arc ��� �� � � corresponds to the data transfer
from task � to task �, that occurs after � has been finished
and before the start of �. The duration of this data transfer is
a constant delay, equal to ��� in case � and � are performed
by different processors and 0 if � and � are performed by
one and the same processor. The task system ��
� ���� ��
is called SCT task system, if the following constraint on the
communication delays holds:

� �
��	������ ���

�
���������� ��
� � (1)

In some cases (see [1,9]) the SCT system is defined by
weaker conditions, but the algorithm presented in section 3
is based on condition (1).

Here we consider the problem of scheduling � tasks of the
SCT task system on � processors under condition (1), where
� and � are finite numbers.

A schedule � � ��� �� assigns a starting time �� and a
processor �� to each task �, so that

1) for any pair of tasks ��� �� if ����� , then ����� � �� or
�� � �� � ��;

333

An Approximation Algorithm for Scheduling Problem on a Finite Number of Processors with Communication Delays

2) for any arc ��� �� of �, if ����� , then ��������; else
������������;

3) if � processors are available: �� �
 , �� � ��� ���.
The makespan of the schedule is denoted by �:

� � ��	
���

��� � ��� (2)

We will denote the optimal (minimal) makespan by �opt.
It will be assumed that the task � precedes task � if there

is a path in � from � to �. The task � is called predecessor of
� and the task � is called successor of �. This relation will be
denoted by � � �. A task � is said to be an immediate suc-
cessor (resp. predecessor) of a task � if there is an arc ��� ��
(resp. ��� ��) in �. For any task � we denote by ���� (resp.
by ����) the set of immediate successors, (resp. predeces-
sors) of �. In case one of immediate successors of a task �
satisfies the following condition:

�� � �� � �� � ��� � (3)

� is called the favorite successor of �. It follows from (1) that
there is only one favorite successor � of �. Similarly � is called
a favorite predecessor of �.

The usual approximation algorithms used for scheduling
tasks on� processors, called list scheduling (LS) algorithms,
build a schedule by means of a greedy process, that sched-
ules a new task at each iteration. Assuming a partial sched-
ule is already built for the time period ��� �����, the greedy
algorithm scans each processor to find a task that is ready
for it at the moment �� and if any, to assign to it the first
ready task in the list at this moment. Graham (see [2]) has
proposed such algorithm for the problem without commu-
nication delays. For this case he obtained the performance
ratio ���opt � � � ���. Rayward-Smith has shown in
[12] that any list scheduling algorithm with unit execution
times and unit communication times (UET-UCT) satisfies
� � ��� �����opt � ��� ����.

When general communication delays are considered (not
necessarily SCT), an extension of the usual schema has been
proposed [5], called ETF (i.e. earliest task first) that can be
outlined as follows:

While there remains an unscheduled task, the set of ready
tasks � (the predecessors of which have been already sched-
uled) is determined. Then for each couple ��� ��, � � �,
� � �� ��, the earliest starting time of task � on processor
�, denoted by ���� �� is computed. Then the earliest start-
ing time � � �
������ ���� �� is determined and a task �,
for which there is a couple ��� �� with ���� �� � � is cho-
sen and scheduled at time �. Finally a processor, for which
���� �� � � is assigned to �.

The ETF algorithm is analyzed in [5] and its performance
ratio has the following bound: ���opt � �� ���� �.

As commented in [4] and [5] the relative performance of
ETF can be decomposed in two parts. One of them is the
Graham’s bound � � ��� and the other is the contribution
of communication delays along a path of the graph, i.e. the
ratio �. The time complexity of ETF (see [5]) is ������.

Hanen and Munier [4] proposed an approximation algo-
rithm called FS, based on an algorithm for unlimited number
of processors and on a modification of ETF algorithm. They

have proved that the performance ratio of their algorithm has
the following worst-case bound:

���opt �
� � ��

� � �
�

� � ��

��� � ��

Möhring, Schäffter and Schulz [9] proposed another ap-
proximation algorithm, that is simpler than the algorithm in
[4]. They first compute a schedule that regards all constraints
except for the processor restrictions. This schedule is then
used to construct a provable good feasible schedule for a
given number of processors and as a tool in the analysis of
the algorithm. The performance ratio of this algorithm is:
���opt � ���. In the next section is presented an approxi-
mation algorithm that in contrast to the above mentioned al-
gorithms not is not based on a greedy procedure.

III. An Approximation Algorithm for the Small
Communication Times Problem (AASCT)

The algorithm AASCT is based on the idea, that the arcs
��� �� of � having great ��� -values should connect tasks per-
formed by one and the same processor. In this way the tasks
become favorite successors and the great delays are elimi-
nated, which leads to reducing the greatest processing time
and minimizing the makespan.

At the first step of AASCT is constructed a consequence of
tasks (chain), beginning with the root of the spanning tree of
�, so that to the current task � is added the task � for which
the ��� -value is maximal. In case there are many arcs hav-
ing one and the same ��� -value, then task �, for which �� is
maximal, is chosen as a next in the chain under composi-
tion. If there are many tasks, having one and the same pro-
cessing time, then the task with smallest index is chosen. In
case the current chain is composed (i.e. no more tasks can be
added to it), the chain is assigned to the next processor in the
list of idle processors. If there is not available idle processor,
then assign the composed chain to the first processor which
becomes idle. In case the starting task of the current chain
needs data transfer from a task assigned to another processor,
the corresponding communication delay should be added. A
new graph �� is created by removing all tasks in this chain
from �. Then graph � is replaced by � � and this step is re-
peated until no more tasks are available for composing new
chains.

At the second step the task consequence on the proces-
sor �� with greatest finishing time (makespan) is consid-
ered. This consequence is investigated, checking for each of
tasks in it whether this task could be changed by one of the
tasks assigned to the other processors ��, � � �� �� � �;
� 	� �; in such a way that the makespan would be reduced.
In case the makespan has been reduced by such a change,
than this step is repeated. In case on all other processors � �,
� � �� �� � �; � 	� �; there does not exist a task, which
could change one of the tasks on �� , which leads to reduc-
ing the makespan, than the algorithm passes to the third step.
At this step ��� � �� comparisons are performed, but the
number of improvements may be arbitrary large because of
combinatorial nature of the problem. For this reason we re-

334

Vassil G. Guliashki

strict the number of repetitions of this step to the small pos-
itive integer 	. Hence there are necessary ��	���� � ���
mathematical operations for the performance of this step.

At the third step a check-up is done, whether some one
of the tasks on the processors ��, � � �� �� � �; � 	� �;
could be started at an earlier moment on the same processor,
so that some communication delay ��� could be moved to an
earlier moment and the makespan would be reduced. If the
makespan is reduced in this way, repeat this step. Because
there are � tasks available, the maximal number of check-ups
is equal to �� � and the corresponding number comparisons
are �����.

Description of AASCT:

Step 0. Initialize ��
 �,
 � �
 , �� � �, �� is an empty
chain.

Step 1. Chose an initial task � from
 � (the root of ��) and
add it to the current chain ��.

For � � �� � ��; �� 	� �� � � ��� find ��� �
��	����������. and add the corresponding task � to � �.
If more then one such arc has the same � �� -value add the
task �, having greatest �� , to ��.

Repeat the For cycle until there are not available suc-
cessors of the last task in the chain.

If there are idle processors available, assign the chain
�� to the next processor � in the list of idle processors,
otherwise assign �� to the first processor, which will be-
come idle.

Remove all tasks in �� and their connecting arcs from
��. Initialize �� as an empty chain.

Repeat Step 1. until there are no more unassigned tasks.

Step 2. Set ������ � �. Find the processor �� having the
greatest finishing time �� after processing all tasks as-
signed to it.

For each task � � � �� , �� � �� �� � �� � 	� ��
check whether it is possible one of the tasks � � ��,
to be changed by � �, reducing the makespan. If it is pos-
sible, do it and set ������ � ������ � �, otherwise
proceed Step 3 without repetitions and if reducing the
makespan is achieved set ������ � ������ � �, other-
wise ������ � ������.

If ������ � 	 repeat Step 2, otherwise go to Step 3.

Step 3. For each processor �� , �� � �� ����� � 	� ��, for
each task � � assigned to �� , check whether it is possible
some to start it on the place of a preceding task on the
same processor, so that the makespan is reduced. If it
is possible, do it and repeat Step 3, otherwise stop the
computations (End of AASCT).

Theorem: The time complexity of AASCT is ��	�����
���, where � and � are the number of processors and the
number of tasks correspondingly.

Proof: The most time-consuming step is Step 2, which
is executed 	 times in the worst case. This step requires
������ comparisons. Taking into account the operations of
Step 3, which will be performed each time Step 2 is repeated,

the running time of the AASCT algorithm is ��	��������.
�

IV. Basic Features of AASCT

As commented in [2] and [12] the increase the number of
processors sometimes degrades the performance of the ap-
proximation algorithm (“anomalous behavior”). This feature
has it reason in the essence of greedy procedures used. At
Step 1. of AASCT algorithm the composed chains are dis-
patched uniformly to all processors, so that the anomalous
behavior is reduced to a great extent. Step 2 and Step 3 re-
duce the makespan by means of changes of tasks on different
processors and changing the starting time of a task on the
same processor correspondingly. I this way they also con-
tribute anomalous behavior to be avoided. The experiments
performed by means of AASCT confirm this good character-
istic of the proposed algorithm.

Another important feature of AASCT algorithm is that
it does not use artificial delays, waiting for a more impor-
tant task (in contrast to the algorithm presented in [4]) and
it is reasonable to expect that the generated best schedule
would have smaller makespan (finishing time) than the algo-
rithms, which use artificial delays. The illustrative example
presented in the next section confirms this presumption. The
mentioned features lead to better performance of AASCT
than that one of some other approximation algorithms as it
is demonstrated in the next section.

V. An Illustrative Example

We will consider the illustrative example used in [4]:

Fig. 1. Graph � with communication delays

The corresponding SCT task system for the example on
Fig. 1. is presented in Table 1:

Table 1. SCT task system for the graph � from Fig. 1

a b c d e f g h i

6 7 9 8 10 6 6 10 6

On Fig. 2 and Fig 3. are presented two schedules as shown
in [4].

Obviously the ETF algorithm creates a schedule with
makespan (maximal finishing time) equal to 34. For the
same example FS algorithm (see [4]) creates schedule with
makespan equal to 29.

335

An Approximation Algorithm for Scheduling Problem on a Finite Number of Processors with Communication Delays

Fig. 2. An ETF schedule (3 processors)

 6 8 16 26
 a 7 d 17 h 23 29
 b 8 c 18 g 24 f
 e i

Fig. 3. A FS schedule (3 processors)

On Fig. 4 is presented the result found by means of
AASCT algorithm for the same example (presented first in
[4]). After Step 1 AASCT schedules on first processor tasks
�, � and �; on second processor – tasks �, �, and !; and
on the third processor – tasks � and �, starting � at moment
� � �. The makespan is equal to 28. After Step 2 AASCT
obtains the result on Fig. 4 with makespan equal to 27.

 6 15 21 27
 a 7 c f g 25
 b 8 d 18 h 24
 e i

Fig. 4. An AASCT schedule (3 processors)

On Fig. 5 is presented the result obtained by AASCT algo-
rithm for the same example but on two processors. After Step
1 the task schedule for the first processor is �, �, �, !; and for
the second processor: �, �, , �, �; The makespan is 38. After
Step 2 task a is replaced by task b and the schedule is: for the
first processor is �, �, �, !; and for the second processor: �, �,
 , �, �; The makespan is reduced to 37. Step 2 is repeated and
task g is replaced by task e. After applying Step 3 the result
on Fig. 5. is obtained. The makespan is reduced to 35.

Fig. 5. An AASCT schedule (2 processors)

VI. Conclusions

An approximation algorithm called AASCT is presented in
this paper. Its time complexity is ��	���� � ���. Since
all approximate algorithms in the literature have polynomial
computational complexity, the main criterion for comparison
of their performance is the makespan (finishing time) of the
generated schedule. The smaller the makespan is, the better

the corresponding performance is. In this connection the rel-
evant important features of AASCT algorithm are the avoid-
ing anomalous behavior and artificial delays, which lead to
its better performance in comparison to that one of ETF and
FS algorithms, as well as (most likely) of some other approx-
imation algorithms, based on greedy procedures.

References

[1] Chrétienne P., C. Picouleau (1995) Scheduling Theory and its
Applications, P. Chrétienne, E. G. Coffman, J. K. Lenstra and
Z. Liu (Eds.), 1995, John Wiley & Sons Ltd, pp. 65-90.

[2] Graham R. L. (1969) “Bounds on multiprocessing timing
anomalies”, SIAM J. Appl. Math., Vol. 17, No. 2, pp. 416-429.

[3] Hanen C., A. Munier (1994) “Performance of Coffman-
Graham schedules in presence of unit communication de-
lays”, http://citeseer.nj.nec.com/hanen94performance.html

[4] Hanen C., A. Munier (1995) “An approximation algorithm for
scheduling dependent tasks on� processors with small com-
munication delays”, Preprint, Laboratoire Informatique The-
oretique et Programmation, Institute Blaise Pascal, Universite
Pierre et Marie, Curie.

[5] Hwang J. J., Y. C. Chow, F. D. Anger, and C. Y. Lee (1989)
“Scheduling precedence graphs in systems with interproces-
sor communication times”, SIAM J. Comput., Vol. 18, No.2,
pp.244-257.

[6] Jakoby A., R. Reischuk (1992) “The Complexity of Schedul-
ing Problems with Communication Delays for Trees”, Lecture
Notes in Computer Sciences, No. 621, Vol. 3, pp. 165-177
Springer, Berlin.

[7] Liu Z. (1995) “Worst-case analysis of scheduling heuris-
tics of parallel systems”, No 2710, Institut National
de Recherche en Informatique et en Automatique,
http://citeseer.nj.nec.com/cache/papers/cs/1573/ftp:zSzzSzftp.
inria.frzSzINRIAzSzpublicationzSzpubli-ps-zzSzRRzSzRR-
2710.pdf/liu95worstcase.pdf

[8] Moukrim A., A. Quilliot (1998) “Scheduling with communi-
cation delays and data routing in message passing architec-
tures”, http://ipdps.eece.unm.edu/1998/scoop/moukrim.pdf

[9] Möhring R., M. Schäffter, A. Schulz (1996) “Scheduling jobs
with communication delays: using infeasible solutions for
approximation”, http://citeseer.nj.nec.com/cache/papers/cs/
5233/http:zSzzSzwww.math.tu-berlin.dezSzcogazSzpeople
zSzformer members pageszSzschaeffterzSzPaperszSzExten
dedAbstract517.pdf/schedu

[10] Munier A., C. Hanen (1995) “Using duplication for schedul-
ing unitary tasks on m processors with unit communication
delays”, http://citeseer.nj.nec.com/munier95using.html

[11] Munier A., J-C. König, (1997) “A Heuristic for a scheduling
problem with communication delays”, Operations Research,
45 (1), pp. 145-148.

[12] Rayward-Smith V. J. (1987) “UET Scheduling with unit in-
terprocessor communication delays”, Discrete Applied Math-
ematics 18, 1987, pp. 55-71.

[13] Veltman B., B. J. Lageweg and J. K. Lenstra (1990) “Mul-
tiprocessor scheduling with communication delays”, Parallel
Computing 16, pp. 173-182.

336

