
16-18 October 2003, Sofia, Bulgaria

Capabilities of R-, R�- and R�-Tree Indexing Spatial Data
in Network Space

Vladan Mihajlović1 and Slobodanka Djordjević-Kajan2

Abstract – Because of the complexity and large amount of data
in spatial databases, SDBMS demands additional structures, i.e.
indexes, for speeding up query processing. Indexes can be orga-
nized in three mayor groups of techniques depending on the way
that the structure divides data space. This paper consider three
hierarchical indexes, R-tree, R�-tree and R�-tree. An experi-
ment is performed on data extracted from a telecommunication
network in order to examine performance of named indexes in
managing network spaces. The results of experiment indicate
that R�-tree is the most efficient and the most robust indexing
structure among these three structures.

Keywords – R-tree, spatial data, network space

I. Introduction

Capabilities of computers in nowadays, larger hard disks and
faster processors, make possible using large scale of complex
data. Spatial data complexity depends on a method applied
for modeling real data. The amount of spatial data, growing
with new demands, decreases application efficiency. Stan-
dard DBMS do not preserve the information about dimen-
sionality of space and do not satisfied new trends. This dis-
advantage invokes creating Spatial DBMS (SDBMS), which
make connection between scalar and spatial data.

Deference between standard and spatial DBMS is in part
that defines spatial semantics. This part is additional layer
above the DBMS, which provide interface for application.
The core of this layer consists of spatial taxonomy, spatial
data models, spatial query languages, query processing algo-
rithms and spatial access methods [1].

Spatial taxonomy depends on real problem domain. It in-
troduces restrictions in modeling relationship between the
objects in real world. The most popular taxonomies are
set based space, topological space, Euclidean space, metric
space and network space.

Selected spatial taxonomy affects the selection of spatial
data model. There are two groups of spatial data model: the
models based on mathematical fields and the object model
[2]. Nowadays, object models are used by most applications.

Execution of spatial query is much slower than execu-
tion of standard query. The reasons are complexity of spatial
data and variety of relationship between them. Comparison
of spatial data approximation, instead of real data, speeds up
query processing. Nevertheless, this does not satisfy terms

1Vladan Mihajlović, Faculty of Electronic Engineering, University
of Nis, Beogradska 14, 18000 Niš, Serbia and Montenegro, E-mail:
wlada@elfak.ni.ac.yu

2Slobodanka Djordjević-Kajan, Faculty of Electronic Engineering, Uni-
versity of Niš, Beogradska 14, 18000 Nis, Serbia and Montenegro, E-mail:
sdjordjevic@elfak.ni.ac.yu

set by user due to great amount of data. Organize the data
in groups following some spatial criterion will help to solve
this problem. Index is a structure that arranges data in groups
according to some group property.

An index is a data structure, which create records with
property that each record contains data with specific key
or that satisfied specific criterion. Thus query processing is
reduced to examine particular record or smaller group of
records and isolating data in it. In this way, indexes make
spatial query processing efficient by decreasing the amount
of data, which is needed to be retrieved from hard disk.

Nowadays, index is part of every DBMS, which manage
database with large amount of records and objects of com-
plex data types. Development of indexes for complex data
types began in the field of spatial data. The indexes in spa-
tial application are necessary due to complexity of spatial
data objects. Indexes are usually built of simpler objects,
which are approximations of real data. Accordingly they
spare checking time and accessed disk pages. Indexes, as
par of SDBMS, are used in Geographic Information Systems
(GIS), CAD Systems, Computer Vision, Multimedia Infor-
mation Systems and Data Warehousing Systems.

The rest of this paper considers application of spatial in-
dexes in GIS. The second section gives an overview of dif-
ferent approaches to indexing spatial data. The third section
outline definitions of R-tree, R�-tree and R�-tree, which are
three very efficient and relatively simple indexing structures.
Next section describes experiment, which use real data to
compare performance of the three structures. Data used in
experiment are extracted from telecommunication network.
Results of comparison are presented in fifth section. The end
of paper emphasizes accomplished research and gives some
recommendation for selecting some of tested indexes in our
applications.

II. Different Approaches to Spatial Data
Indexing

Indexes designed for scalar data types are pretty simple since
the key value can be determined strictly. A basic feature of
spatial data is multidimensionality. This invokes problems
since memory has only one dimension. This difference di-
minishes performance of indexes designed for scalar data
types. This also provokes creation of fully new indexes de-
signed for multidimensional data. Two major features of an
index are how it partitions the data space and how it asso-
ciates data with subspaces. According to these two features,
indexing structures for spatial data can be classified in the
three following approaches [3]:

337



Capabilities of R-, R�- and R�-Tree Indexing Spatial Data in Network Space

1. The transformation approach. This approach comes
in two flavors:

– Parameter space indexing. Object described by � ver-
tices in a �-dimensional space are mapped in an ��-
dimensional space. Points generated by such mapping can
be stored directly in indexing structure designed for point
data. An advantage of this approach is that is does not re-
quire creation of new index or modification of existing one.
The main drawback is that the spatial proximity is not pre-
served in most cases.

– Mapping to a single attribute space. The �-dimensional
data space is partitioned into grid where cells have the same
size. The cells are labelled according to some curve-filling
methods. So, spatial object is represented by set of numbers
depend on cells that intersect with it. Therefore, objects can
be indexed using conventional indexes for scalar data, like
B�-tree [4]. Shortcoming of this approach is multiplication
of index entries.

2. The non-overlapping native space indexing ap-
proach. There exist two classes of techniques:

– Object duplication. A �-dimensional data space is parti-
tioned into pairwise disjoint subspaces. These subspaces are
then indexed. An object identifier is duplicated and stored in
all subspaces it intersects.

– Object clipping. This is very similar to previous ap-
proach. Instead of duplicating the identifier, an object is de-
composed into several disjoint smaller objects so that smaller
sub objects are totally included in a subspace.

The most important property of this approach is that data
structures used are straightforward extensions of the under-
lying point structures. This kind of indexes can store both
points and objects with extensions together without having to
modify the basic structure. Huge drawback of this approach
is duplication of objects, which requires extra storage space
and, more expensive insertion and deletion operations.

3. The overlapping native space indexing approach.
The leading idea of this approach is to partition the data space
into manageable number of smaller subspaces, which are hi-
erarchically organized. Point object is included in one sub-
space, but nonzero sized objects may extend over more than
one subspace. To assign nonzero sized object to exactly one
subspace, subspaces are allowed to overlap. Spatial objects
are indexed in their native space using this approach and that
is its main advantage beside hierarchical organization. Main
drawback is higher costs of insertion and deletion operations.

The overlapping native space indexing is the newest one.
The basic advantage of this approach is preserving proximity
relationship between objects that represent real data. Proxim-
ity is the basic relationship in every metric space. This index-
ing approach furthermore preserves proximity relationship
between the entries on each level of hierarchical structure.
A major design criterion for this approach is to minimize
the overlap between subspaces and the coverage of subspace.
The R-tree uses this kind of indexing approach.

III. Three Basic Types of R-Tree

An R-tree [5] is a high-balanced, hierarchically organized
structure. A leaf of R-tree contains identifiers of database

tuples, i.e. pointers to data objects. This tree is based on B-
tree. Size of node corresponds to memory page size. R-tree
is completely dynamic and no periodic reorganization is re-
quired.

R-tree is formed over data objects approximation. In two-
dimensional space objects are approximate with minimum
bounding rectangle (MBR). In the following we will de-
scribe two-dimensional R-tree. A leaf of tree consists of set
of ��� ��� entries, where �� is unique database tuple identi-
fier and � is MBR of data object identified by ��. An internal
node of tree contains entries of the form ��� ���� where ���
is address of child node in the tree, and � is MBR that covers
all rectangles in the lower node’s entries.

Two values are typical for every R-tree. These are max-
imum number of entries that will fit in one node �	� and
minimum number of entries in node �
 � 	���. Maximum
number of entries is determined according to size of disk
page. Minimum can be changed to improve structure per-
formance. Only root node can have fewer entries than min-
imum. During the tree making node overflow or underflow
will appear. The underflow is settled by reinsertion of entries
that are rest in node. The overflow is resolved by splitting
node in two parts. Two split algorithms are offered, linear
and quadratic. Linear algorithm assigns elements to one of
two new nodes one by one. Quadratic algorithm form two
groups around two furthest elements using the criterion of
minimum area covered.

Next variant of R-tree is R�-tree [6]. Consider the advan-
tage of the non-overlapping native space indexing approach
author of R�-tree modified R-tree so that overlapping be-
tween entries in internal node is equal to zero. Since there is
no overlapping query, and there is no need to traverse multi-
ple paths and the queries will execute faster. To achieve dis-
junction property between entries of level immediately above
the leaf level same data object can be element of more than
one leaf node. R�-tree has not lower bound in number of
node’s entry �
� and if deleting is frequent performance of
the tree can be deteriorate. This tree is not dynamic structure
and requires periodic reorganization.

Objective of authors of R�-tree [7] is to prove that overlap-
ping between internal node’s entries does not lead necessary
to index which has low efficiency. R�-tree has the same hi-
erarchical structure as R-tree. The difference between them
is in insertion and deletion algorithms. The authors carried
out several criteria, which were believed to have the greatest
effect on index performance. These criteria are: minimiza-
tion of the area covered by rectangles in internal nodes, mini-
mization of the overlap between rectangles in internal nodes,
minimization of the margin of rectangles in internal nodes
and optimization of storage utilization. The authors of R�-
tree analyzed interdependencies among different parameters
and optimization criteria and define insertion and deletion
operation. Thus they proposed a split algorithm for R �-tree
that firstly determines the axis perpendicular to which the
split will be performed and then determines the best distri-
bution of elements in two groups along that axis. One of
following three criteria can be used in both parts of algo-
rithm, unused area minimization, overlapping minimization
and margin minimization. The new parameter introduced in

338



Vladan Mihajlović and Slobodanka Djordjević-Kajan

R�-tree is �. R�-tree treats overflow differently if it appears
for the first time on particular level. In this case reinsertion is
forced. Parameter � defines the number of entries that need
to be reinserted. If an overflow appears for the second time
in the same level of the tree, the split is performed. This
forced reinsertion reorganizes the tree structure and improves
its performance.

IV. Experiment Layout

Purpose of the experiment was to compare performance of
three types of R-tree tested on real data. For this experiment
all three R-trees are implemented in C�� language. Imple-
mented trees manage two-dimensional data. Special software
was designed in Visual C�� 6.0 programming environment.
This software is used for performing large scale of tests on
real and semantic data space.

In this paper will be presented tests performed on real data
space. Data in this space is network of telecommunication
canals and cables. Three tables of network data extracted
from the spatial database. In the first (P1), the telecommu-
nication cables represent spatial data. This space consists of
192 data and MBRs cover 10% of space area. The second
table (P2) contains linear segments of the cables. This table
has 848 tuples and data approximation occupy 1% of space
area. Overlapping of data MBRs in previous two spaces is
minimal. The third set of data (P3) consists of start and end
points of cable segments and some key points in the telecom-
munication network. Total number of points is 5929.

Query represents search operation, which returns a set of
data that satisfy requested criterion. For testing index struc-
tures, the three basic queries are used: point query and two
types of rectangle query. The point query returns data, which
MBRs contain given point. The overlap rectangle query re-
turns data, which MBRs overlaps with given rectangle. The
second type of rectangle query returns data, which MBRs
enclose given rectangle. The first group of queries is point
query (U1). The second are enclose query with query rectan-
gle which area is 20% and 50% of elementary data (U2 and
U3). Elementary data is square which area is equal to space
area divided with number of data in space. Size of query rect-
angle in overlap query is equal to elementary data (U4), five
times bigger (U5) and ten times bigger (U6) then elementary
data.

Within each indexing structure the variant with the best
performance is chosen for mutual comparison. To determine
the best variant of R-tree was selected by changing parameter

 from 10% to 50% with step of 5%. R-tree with linear and
quadratic split algorithm was observed separately. Consid-
ered variants of R�-tree have nodes filled from 75% to 95%
of their capacity with step of 5%. To select best variant of R�-
tree parameters 
 and � had values from 10% to 50% with
step 10%, and with all possible combination of three crite-
rion for choosing axes and distributions. Trees with different
maximum number of elements in node (M) were compared
separately because this parameter was imposed by memory
page size. This parameter took four values, 13, 28, 56 and
113, according to page sizes of 0.5 kB, 1 kB, 2 kB and 4 kB.

Purpose of index is to minimize the number of disk access.
Accordingly performance of three types of R-trees measured
by number of memory pages accesses. Because all three
structures have property that nodes exactly fit to one page,
the efficiency is measured by number of nodes accesses dur-
ing the query execution.

V. Interpretation of The Results

Because of small number of data in space P1 it is difficult
to make general conclusions, but some trends can be iso-
lated. R-tree that use quadratic split algorithm shows bet-
ter results than linear counterpart. Property of R�-tree that
internal nodes must be disjunctive, even in this space with
small number of nonzero sized data, demonstrate its main
drawback significant increase in number of nodes in tree. All
examined variants of R�-tree, with different criteria used in
split algorithm, have nearly same performance (difference is
below 10%). Variants of R*-tree with greater freedom in se-
lecting minimum number of elements in node (m) have better
results than the more restrictive variants.

Fig. 1. Performance of indexes tested on linear segments as data
objects of real network space

The results of query processing of P2 space demon-
strate performance of tested index structures in real network
spaces. Both split algorithms for R-tree, linear and quadratic,
show almost equal performance. The variants of R-tree with
greater freedom in number of elements in node appear to be
superior. This advantage, which goes with greater freedom, is
result of small MBRs of line segments and that each segment
is a part of multi-line string that represent one cable. Same
feature show R�-tree. This invokes rising of minimum node
elements threshold for improving storage utilization. Criteria
that are most efficient for R�-tree split algorithm are mini-
mizing of the margin for choosing the axis and minimizing
the overlap for selecting appropriate distribution. Parameter
� has minimal influence on R�-tree performance. R�-trees
in P2 space show two features. The first is more elements in
R�-tree than in R-tree or R�-tree constant value for parame-
ter 	 . The second is that efficiency of tree does not depend
on storage utilization, as it is determined for point data. Fig-

339



Capabilities of R-, R�- and R�-Tree Indexing Spatial Data in Network Space

ure 1 present performance of linear R-tree, quadratic R-tree,
R�-tree and R�-tree for different types of queries and param-
eter 	 set to 56. R�-tree demonstrates poor performance,
especially for overlap queries. This shortcoming is affected
by traversing multiple paths since query rectangle intersect
more then one entry in node. This is a consequence of poor
algorithm for tree creation. R�-tree has minimum node ac-
cesses per query due to good minimization of node area and
node overlapping. The other values for maximum number of
entries in a node do not make qualitative changes on results.

Fig. 2. Performance of indexes tested on points as data objects of
real network space

Experiment on P3 space of points shows some distinction
from expectation. Previous experiment performed by differ-
ent authors concludes that quadratic split algorithm has bet-
ter results than linear. The test on point data extracted from
telecommunication network indicates to different conclu-
sion. Linear variant of R-tree has better results than quadratic
no matter what value is choused for 	 . Reason for this is
probably the particularity of data space. Tests on synthetic
data show that the best R�-tree variant uses minimization of
margin and overlap as criteria for splitting node. In this space,
minimization of node area results with most efficient tree.
Although, the performances of variant that use other criteria
are only 1% worse than the best variant. Also, storage utiliza-
tion for R�-trees is much lesser than in synthetic data. If it is
allowed to deteriorate efficiency about 1%, the variant of R�-
tree with far better storage utilization can be found. Figure 2
show number of nodes access per query for different types of
queries and 	 set to 56. R�-tree has minimal node access
when point and enclosing rectangle query are performed be-
cause the overlap between node’s entries is equal to zero. But
this advantage disappears with overlap rectangle query. That
fact can be explained by large volume of unused space in in-
ternal node entries. Consider all six groups of queries R�-tree
is the best choice overall. More data about the experiments
can be found in [8].

VI. Conclusions

In previous papers that consider performance of R-tree au-
thors agreed that a quadratic split algorithm creates better

structure than a linear split algorithm. Linear and quadratic
R-tree formed over telecommunication network space pre-
sented in this paper show nearly same efficiency. Larger over-
lapping between entries in internal nodes causes degrada-
tion in search performance. Basic property of R�-tree, that
overlapping between entries in internal nodes is zero, results
in very efficient performing of rectangle enclosure query in
point space. Disadvantage of this structure is unsatisfactory
insert algorithm, which form entries with large unused space
and make R�-tree useless for nonzero sized data. Main draw-
back of this index is that it is not dynamic structure.

Algorithms of R�-tree are designed to enable greater in-
fluence of used criteria in creating nodes of index, which
improve structure quality, i.e. minimize overlap and unused
node area. Number of node access during query process-
ing over R�-tree has logarithmic proportion with the num-
ber of data in space, i.e. depends directly on number of lev-
els in tree. Quality of R�-tree has slightly affected by size
and shape of data. Involved experiments with network data,
which form variety of shapes, strongly affirm this fact. R�-
tree is more robust and more efficient structure than the other
two.

Acknowledgement

The research was partially supported by the project “Geo-
graphical Information System Designed to Improve the Lo-
cal Municipal Function based on Internet/WWW Technolo-
gies”, funded by Ministry of Science, Technology and De-
velopment, Republic of Serbia and Municipality of Niš, Con-
tract No. IT.1.23.0249A.

References

[1] S. Shekhar, S. Chawia, S. Ravada, A. Fetterer, X. Liu, C.
T. Lu, “Spatial Databases - Accomplishments and Research
Needs”, IEEE Transactions on Knowledge and Data Engi-
neering, vol. 11, no. 1, Jan./Feb. 1999.

[2] M. Worboys, GIS: A Computing Perspective, Taylor & Fran-
cis, 1998.

[3] E. Bertino, B. C. Ooi, “The Indispensability of Dispensable
Indexes”, IEEE Trans. on Knowledge and Data Engineering,
vol. 11, no.1, pp. 17-27, Jan./Feb. 1999.

[4] R. Bayer, E. McCreight, “Organization and Maintenance of
Large Order Indices”, Proc. 1970 ACM-SIGFIDET Work-
shop on Data Description and Access, pp. 107-141, Houston,
Texas, Nov. 1970.

[5] A. Guttman, “R-Trees: A dynamic Index Structure for Spatial
Searching”, Proc. ACM SIGMOD Intl. Conference on Man-
agement of Data, pp. 47-57, 1984.

[6] T. Sellis, N. Roussopoulos, C. Faloutsos, “The R�-Tree: A
Dynamic Index for Multidimensional Objects”, Proc. of the
13th Intl. Conference on Very Large Databases Conference,
pp. 507-518, Brighton, 1987.

[7] N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger, “The
R�-tree: An Efficient and Robust Access Method for Points
and Rectangles”, Proc. ACM SIGMOD, pp. 322-331, June
1990.

[8] V. Mihajlović, Spatial data indexing, Diploma thesis, Faculty
of Electrical Engineering, Niš, May 200

340


