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Abstract — I n the recent issue are shown the Gaston Julia’s mul-
titudes and their computer presentation.

Keywords — Gaston Julia, multitude, segment

I. Introduction

Many physical systems that are deterministic, it means that
their future behavior is defined completely of the past con-
dition of the objects, are so sensitive to the beginning con-
ditions that theirs behavior is difficult to predict. The first
difficulties in the deterministic approach in defining the con-
dition of more complex system appear when the mathemati-
cians as Cantor, fon Kox, Peano and Julia show geometric
curves that are different from the previous. They are char-
acterized as “selfsimilarity” it means that the shape of every
little segment from the curve has the shape of the bigger seg-
ment. The length could not be easily defined and their size
differ from that of the line and is situated between the size of
straight line and plane.

The mathematician B. Mandelbrot concludes that many
simple mathematical expressions could lead to “Chaotic”
nonperiodical functions that although have stable behavior
defined from the beginning conditions. Mandelbrot for the
first time uses the concept “fractal”-curve, which size by
Hausdorf-Bezicovich is higher than the size of the Euclid’s
space. The term “fractal” comes from the Latin “fractus”,
that means “irregular or fragmented”. Different algorithms
are made for generation of graphic computer fractal images.
The mathematician M. F. Barnsly by examining the “Julia”
multitudes searches different ways for generation of real im-
ages. He invented the method of “iteration functional sys-
tems” (IFS) that is complex of “iterative affined transforma-
tions” that define the connections between the parts of the
image.

In the recent issue are shown the Gaston Julia’s multitudes
(1893-1978) and their computer presentation. [2,3]

Il. Mathematical Presentation of the Julia’s
Multitudes

Let with C' mark the Gaus’s plane of complex numbers, and
with C' — the Riemann’s sphere C' |J{oo} [2]. Let R is a ra-
tional function:

R(z) = P(z)/Q(z), z€C, 1)

where P and @ are polynomials that have not common divi-
sors.
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We presume that the function degree of R, degR =
max{deg P,deg )} is greater than 1. This degree is equal
of the number of the proimages of the point z,

R™'(z) ={y € C: R(y) = z}. 2

The Julia multitude Jg is commonly a multitude of
exceptional points of the function R R"™(z) =
R(...(R(R(z)))...), n = 1,2, 3,... The addition to the mul-
titude Jg is called Fatu multitude Fr = C'\ Jg. The classic
definition for the Julia multitude is very comfortable for in-
tuitive learning. That’s why we take another definition, more
accessible for understanding; it means the periodic trajec-
tory. In every =y € C, the correlation 2,1, = R(z,),
n = 1,2, ..., defines certain sequence of points. This se-
quence is called positive semitrajectory of the point o and
is marked with Or™ (z¢) [2,3]. When defining the negative
semitrajectory could spring up difficulties because of the
noncomplex of the reverse image R . Although, taking all
proimages we put:

Or (zo) ={x € C:RF(z) =z fork=0,1,2,...} (3)

If 2, = zo in Or~(zo) in known n, could be said
that zo is periodic point. In this case Or—(zo) is called
periodic trajectory or circle that is marked with v =
{zo, R(z0), ..., R" (o) }. If n is the smallest natural num-
ber having the pointed attribute, than n is called trajectory
period.

In the case n = 1 there is the equality R(zo) = o, it
means that x, is immovable point of the function R. It is
obvious that if zq is periodic point of the period n, than z ¢
is unmovable point of the function R"™. (There have not to
be mixed up the iterations of R and the rank of R, it means
R"(z) =RoRo---oR(z)and (R(z))™.)

For the characterization of the stability of the periodic
point zo with period n, have to be calculated the derivative.

!
The complex number A = (R™)'(zo) ( = di) is called self
T,

meaning of the point z,. Using the rule for differencing the
complicated function we see that that number is the same for
every point from the cycle. The periodic point z is called:

e supergravitation & A =0,
neutral < |A| =1,
gravitation < 0 < |A| < 1,
repulsion < |A| > 1.

The Julia multitude Jg could be described with the ratio-
nal function R. Let P is multitude of all the repulsion peri-
odic points of the function R. If 2 is arbitrary gravitation
unmovable point, than we examine its gravitation zone

A(xo) = {x € C: R*(z) = 20, whenk — oco};  (4)
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A(zo) consists of these points x, which positive semitra-
jectories Or™(x) agree in point. This multitude consists
of the negative semitrajectory of the point zo, Or— ().
If v = {z0, R(xo),..., R" 1(zo)} is gravitation cycle of
the period n, then each of the unmovable points Ri(zg),
i = 0,1...,n — 1 of the function R™ has its own gravity zone
and A(+y) is just union of these zones [2].

I1l. Fundamental Features of the Julia Multitude

1. Jg consists of more than numbered multitude of points.

2. The Julia multitudes of Julia functions R and R*, k =
2,3, ... coincide.

3. R(Jr)=Jr = R_l(JR).

4. For each point x € Jg its negative semitrajectory
Or~ (zo) is continuous in Jg.

5. If v is gravity cycle of the function R, than A(y) C
Fr = C\JR and 814(’}/) = Jg.

(Here 0 A(y) means the limit of the multitude A(~y), it means
that z € JA(y), if x ¢ A(y) and exists a sequence of points
from A(+y), agree in point z.)

On fig. 1 and fig. 2 are shown examples for Julia mul-
titudes restricting two, even four different zones of gravity
unmovable points.

6. If the Julia multitude has internal points (points z € J g,
such that for knowne > 0, {z : |z — Z| < ¢} C JRg)
then Jp = C.

7. Such a situation obviously is met rarely and although,
one of the examples gives the function R(z) = ((x —
2)/x)?

8. Ifz € Jg and ¢ < 0, then exists whole n, in which
R (J™) = J,,.

From the features results of that each rational image has
big reserve of repulsion points. That’s why the Julia mul-
titude is not changing when the image R is acting, but the
dynamic of Jg is chaotic. The fifth feature shows the cal-
culation algorithm for receiving images of the multitude J .
Unfortunately the negative semitrajectory of the point z €
Jg usually is not distributed equally in the Julia multitude.
That’s why we need more complex algorithms for solving
each time which of the branches of the tee structure Or ~(Z)
have to be taken for most effective building of the image.
Such algorithms are made and used for creation of our im-
ages. The sixth feature shows that in many of the cases the
multitude Jg has to be fractal. For example, if R has more
than 2 gravity unmovable points a, b, ¢, ..., then

0A(a) = J)R = 0A(b) = Jp = 0A(c) =---, (5)

it means that the limits of all gravity zones coincide. So, if
R has 3 or 4 gravity unmovable points, then J g consists of
three sided or four sided points according to the gravity zones
[2,3].

IV. Methods for Receiving of Computer Images
of the Julia Multitudes

There are two different methods for receiving computer im-
ages of the Julia multitudes. One of them is based on the fifth
feature and the other on the sixth feature. None of the meth-
ods has special advantages. In some cases the first method
works better, in others the second. There are many cases
when the two methods work perfect. But there are whole
class of Julia multitudes for which is very difficult to be
received satisfying images (if it is possible to receive any
images). This class consists of Julia multitudes that limit
parabolic regions, it means that correspond to images with
parabolic periodic point.

A. Method of reverse iteration

If a rational image R is given and is known one periodic re-
pulsion point Z € Jg, then the feature (5) permits to be cal-
culated

Jp={x € C:RFx)=xzforgivenk <n}. (6)

B. Modified method for reverseiteration

The strategy is the following: over Jr is put rectangular grid
with small size 5. After this, for each cell B from the grid,
have to be stopped the use of points from it for reverse itera-
tion if certain number of Ny,ax points in B are already have
been used. It is usually that the optimal choice of 5 and N ax
depends of u g and of the parameters of the computer image
as the resolution of the used system. Therefore an iteractive
and adaptive algorithms are necessary [2].

On fig. 1 and fig. 2 are shown two figures of images re-
ceived from the Julia multitudes by the modified method for
reverse iteration.

Fig. 1
On fig. 1 is shown:
r— (1+e)\z +2° (7)
27
A=e20, =0, &=0.001

On fig. 2 is shown image of the Julia multitude with
parabolic unmovable point for: [1,2,4]

T — A\x + 22 (8)

2mi

A=e20, z9 = 0.
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Fig. 2.

V. Additional Remarks

1. It is possible to be received interest pictures and with
the help of two different colors — black and white. It is
possible the use of color till K = 200;

2. The picture that is received is symmetric according the
beginning of the coordinate system;

3. The time for calculation could be reduced two times be-
cause of the symmetry of the calculation process;

4. All the points that not incline to infinity after K steps,
will be colorized in black, including the points that lay
in regions of repulsion of other attractors, if exist such.

VI. Conclusion

The fractal image is infinite series of iteration and in the re-
verse iteration, the resolution of the display is not important,
as independent from the level of zooming of the image, the
level of the details is not changing.

A conclusion could be made that the method for signal and
image compression through their fractal presentation is one
of the most perspective and interesting in this field. It may
be attention for additional scientist researches with purpose
of creating new real program instrumentation for mass pro-
grams in effective and cheap computer multimedia systems.
For example for the purposes of the television with high den-
sity — HDTYV, such results will be necessary because of its
future global use.
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