
16-18 October 2003, Sofia, Bulgaria

User-Level DMA Extension for NOW/Cluster Applications
Alexander P. Kemalov1

Abstract – Direct Memory Access /DMA/ is previously used to
transfer data between the main memory of host computer /PC/
and the network � to another one. This method is used to
free the processor from the burden of transfer operations. DMA
procedures commonly are initiated by the operating system ker-
nel to separate one application and its data with another.

A Network of Workstations /NOW/ architecture suggest that
interconnections get faster and overhead and latency in net-
works go down while operating system operations get slower.
In NOW or clusters these factors are very important because
an intensive data transfers between hosts. These trends imply
that DMA operation becomes slower /using operating system
kernel/, compared to interconnection network.

This paper proposes several algorithms that allow applica-
tions to start DMA operation without OS kernel. The algo-
rithms allow user-level applications to have direct access to
the DMA engine. This approach is achieved without requiring
changes to the OS kernel. Using our algorithms, DMA opera-
tion can be initiated faster /in comparison to OS kernel/.

Keywords – DMA operation, memory allocation, networks, op-
erating system kernel

I. Introduction

Direct Memory Access /DMA/ is a common method for rout-
ing data directly between memory of host computer /PC/ and
an input/output device /network controller/ without requiring
enervation by the CPU. DMA management has been tradi-
tionally done by Operating System kernel, which provides
protection, memory, buffer management, DMA registers and
address translations. The overhead of this kernel initiated
DMA transaction is hundreds of CPU instructions. There are
two reasons for the necessity of the OS involvement in start-
ing a DMA operation:

1. Atomicity – DMA operation start with transfer to DMA
engine a source address, destination address and size of
DMA packet. The process invokes OS to start an and
schedule DMA operation and when finished, start an-
other.

2. Protection from program errors – DMA engine works
only with physical addresses, not allowed to access to
user programs.

The user program use virtual address and must be trans-
lated to physical one. Virtual-to-physical address translation
is performed by OS kernel. The physical memory pages used
for DMA must be pinned to prevent the virtual memory sys-
tem form paging them out while DMA data transfers are in
progress.

1Al. Kemalov is with ICCS institute of BAS, Akad. G. Bonchev str. Bl.2
1113 Sofia Bulgaria, sasho@hsi.iccs.bas.bg

In the last years, high-speed LANs offers great perfor-
mance and communication throughput and overheads of the
OS involvement in DMA operation are still sensitive. For
this reason, several researches have started to address the
problem of letting user applications initiate DMA operation.
Projects SHRIMP [1] and FLASH [2] have pinpointed the
importance of user-level DMA. A disadvantage of these ap-
proaches is needs of modification of OS kernel.

A DMA procedure has three arguments: source address,
destination address and size of packet. A DMA engine is re-
sponsible to perform above sources.

The OS translate the virtual source and destination ad-
dresses to their corresponding physical addresses and size
to the DMA engine registers and start a DMA transfer. One
of the common used techniques to secure virtual-to-physical
address translation is the notion of shadow addressing [3].
For each virtual address vaddr correspond physical – paddr
and shadow(paddr). The shadow address is concatenating
the physical one. The difference is shadow bit in address /
for example 0x0FFFF � regular address; 0x1FFFF � its
shadow address; range is within the physical address range;
it is made in initialization time/.

An access to shadow address is interpreted by the DMA
engine – virtual address vaddr is mapped to physical ad-
dress paddr and virtual shadow address shadow(vaddr) -
to shadow(paddr). A transformation virtual-to-physical ad-
dresses use TLB (page-table) and is performed by memory
controller. When a user application tray to pass the DMA
engine, it will be treated as an argument passing opera-
tion and reject access to regular physical address. Thus it
makes an access to virtual shadow(vaddr). The DMA en-
gine recognizes the shadow address and takes the physical
address paddr by applying function shadow to physical ad-
dress shadow(paddr).

The mechanism of shadow addressing is fast and reliable,
to pass physical addresses to a DMA engine from user mem-
ory space.

Another problem is to guarantied atomicity of a DMA op-
eration. If there were a way to execute two instructions unin-
terrupted, then the problem will be solved. But from security
point of view, it is dangerous because malicious users may
be monopolizing an execution of programs – a decision is
OS control.

II. First User-Level DMA Algorithm

The DMA engine is equipped with /4 to 8/ register contexts.
Each context has a source, destination and size registers with
their meaning. Each context is mapped into memory address
space so that the processor can access it. Distinct context are

348



Alexander P. Kemalov

mapped into distinct memory pages so that each process gets
access rights for only a single context. Each process can start
user-level DMA operation /to write into single group context
registers/. Thus if a process gets interrupted while starting a
DMA, its arguments can’t be mixed with another process’s
arguments. Each process has its own space in the DMA en-
gine.

Unfortunately, user-level application can’t use regular
load/store operations to access these registers and load them
with arguments of a DMA operation. Thus a process that
would like to pass a physical address to a register context
will pass context identification as a data argument of store
operation, since the address argument of store has already
been reserved to pass the shadow address:

STORE context id TO shadow(vaddr)

The DMA engine extracts the paddr from
shadow(paddr) and put it in register context context id.
To start a DMA, a process makes a sequence of above
store operations. Unfortunately any process will be allowed
to write an address argument into any register context. To
prohibit this, we introduce a key that implies the user process
is allowed to register context. Thus a physical address is
passed to a DMA engine:

STORE key#context id TO shadow(vaddr),

i.e. to proof key in OS and in an instruction is permitted to
store a physical address as an argument in the register con-
text. Using the above instruction the address arguments are
securely passed to the DMA engine.

The last argument that must be passing is size of DMA
packet. In this case we used regular store operation to the
address that corresponds to the register context /size register/.

A user-level DMA operation is performed in fig. 1.
The last argument that must be passing is size of DMA

packet. In this case we used regular store operation to the
address that corresponds to the register context /size register/.

A user-level DMA operation is performed in fig.1.
We used store /not load/ instructions to load address argu-

ments because a process that have both read and write access
to the source address will be able to start user-level DMA
operation from it. Most parallel and distributed applications
use DMA procedures that have both read and write accesses
to these data.

Fig. 1.

III. Second DMA Algorithm

The algorithm proposed above, achieves user-level DMA op-
eration without OS kernel modification. But theoretically
may be broke from a lucky user, who manages to guess an-
other user’s key. To avoid this one, we make the identification
of the process part of the shadow address.

We introduce some bits of the physical address that will
be passed as an argument to the DMA engine corresponds to
the process identification. These bits are set by the OS when
it creates the mappings from shadow virtual addresses� to
shadow physical addresses. Part of the shadow physical ad-
dress is now the context id /2 bits/, i.e. 4 processes will be
able to start user-level DMA operation from the same pro-
cessor /fig. 2/.

Fig. 2.

By checking the context id , the DMA engine knows
which process the shadow address belongs to. The DMA en-
gine has several register contexts to save these addresses, re-
ceives in the appropriate contexts and start the DMA opera-
tion when all arguments are available. If there are no regis-
ter contexts and DMA engine receives pairs of STORE and
LOAD instructions, it checks for the context id value of the
two physical addresses. If they are different, DMA is not
started and an error is returned by the last LOAD instruction.

IV. Third Algorithm

In the last algorithm we tray to start user-level DMA opera-
tion without the need extra bits in the physical address /con-
text id /. If a process passes at least one shadow address more
than once, the DMA engine may be able to determine if the
user process was interrupted. The proof is checking the two
successive accesses to the same shadow addresses. The DMA
engine initiates a DMA operation only if it sees a sequence of
the form LOAD, STORE, LOAD and arguments of the two
load instructions are the same. If the process is interrupted
while trying to start a DMA, then the DMA engine will re-
ceive a non valid sequence of shadow addresses, and DMA
is not start.

The above sequence may lead to error data transfer, if
abused by malicious user – a possibility of interleave of
shadow address.

We introduce additional instruction to protect this situa-
tion:

DMA(vsouce, vdestination,size)
STORE size TO shadow(vdestination)
LOAD return stat.1 FROM shadow(vsouce)
STORE size TO shadow(vdestination)
LOAD return stat.2 FROM shadow(vsource)
LOAD return stat.2 FROM shadow(vsource)

349



User-Level DMA Extension for NOW/Cluster Applications

If a malicious user does not have access to addreses
vsouce, vdestination, above sequence will work correctly. To
provide this and avoid interleaving, we include additional in-
struction: /Fig. 3/

Fig. 3.

The shadow(vsource) address pass twice to the DMA en-
gine, while shadow(vdestination) address – three times. The
DMA engine is prepare to receive 5 instruction sequence to
shadow address space and a DMA operation start only if
there are sequence STORE, LOAD, STORE, LOAD, LOAD
and the address arguments in instructions 1,2,5 and 2,4 are
the same.

V. Proof of Correctness

We proof above algorithms with a testbed including a
pair Pentium III workstations, running MSC.Linux OS rev.
nov.02 /special version for cluster and distributed applica-
tions/. The test applications consists a server and client /ping-
pong/ messages with acknowledgments and different size of
packets.

A DMA operation would be initiated incorrectly if a user
process attempt to start a DMA, are interrupted and inter-
leave their address arguments. Suppose that process P1 want
to start DMA from A1 memory location� to A2. Suppose
that there are several other processes P2...Pn interleave their
instructions with P1. Although other processes may have
read only access to A1, they do not have access to A2. As-
sume that all P2Pn execute subroutine in fig. 3 and want to
write/read the same physical address. If processes P2...Pn be-
long to different applications, then they should not be able to
write-share the same physical memory location, since differ-
ent applications do not write-share physical memory. Thus
such an interleaving can’t happen.

If P2...Pn belong to the same application, then there should
be some synchronization operations be include before they
all attempt to write/read the same memory location. This syn-
chronization should serialize DMA operations.

If all access to A1 were issued to P1, that process has also
issued two interleavening LOAD instructions to A2 as well.
Thus all trying to access to A2 is reached from DMA engine.
If a DMA started all five instructions must have been issued
by the same process /P1-successfully started DMA/.

VI. Conclusion

UDMA allows user process to initiate DMA procedure to or
from I/O nodes at a cost of only two user-level memory refer-
ence and additional instructions. These extremely low over-
heads with using of UDMA.

The UDMA procedure does not require much additional
hardware because it takes advantage of both hardware and
software in the existing virtual memory system. This is very
important in a process of an implementation of cluster archi-
tectures in practice.

In the future we tray to implement these procedures in I/O
operations in a cluster architecture and GRID middleware.
This task transform DMA procedure in remote I/O paradigm
in which applications use familiar parallel I/O interfaces to
access remote file systems.

References

[1] M. Blumrich, R. Alpert, Y. Chen, D. Clark, C. Dubnicki, De-
sign Choices in the SHRIMP system: An Empirical study. In
Proc. Of 25th Intern’l Symp. On Computer Architecture, 1998

[2] J. Heinlein, K. Gharachorloo, S. Dresser, A. Gupta, Integra-
tion of Message Passing and Shared Memory in the Stanford
FLASH Multiprocessor. In Proc. of 6th Intern’l Conf. on Ar-
chitectural Support for Progr. Languages and OS, 1994

[3] C. Dubnicki, A. Bilas, Y. Chen, K. Li, VMMC-2: Efficient
Support for Realible Connection Orienteted Communication.
In Proc. of Hot Interconnects, 1997

[4] R. Dimitrov, A. Skjellum, An Efficient MPI Implementa-
tion for Virtual Interface (VI) Architecture - Enabled Cluster
Computing. http://www.mpi-softtech.com

[5] Intel Corp. Intel Virtual Interface Architecture - Developer’s
Guide http://developer.intel.com/design/servers/vi/developer

[6] M. Buchanan, A. Chien, Coordinated Thread Scheduling for
Workstation Clusters under Windows NT. In Proc. of USENIX
Windows NT Workshop, 1997

[7] NERSC PC Cluster Project at Lawrence Berkeley Nat’l Labo-
ratory M - VIA: A High Performance Module VIA for Linux;
http://www.nersc.gov /research/FTG/via

[8] St. Muir, J. Swift, Functional divisions in the Piglet multipro-
cessor operating system, In ACM SIGOPS European Work-
shop, 1998

[9] K. Schwan, R. West, M. Rosu, A Network Co-processor
based Approach to Scalable Media Streaming in Servers. In
Intern’l Conf. on Parallel Processing, 2000

[10] G. Banga, J. Mogul, Scalable kernel performance for Internet
servers under realistic loads. In USENIX Technical Confer-
ence, 1998

350


