
16-18 October 2003, Sofia, Bulgaria

Interactive Computer System for Solving Problems with
Multiple Criteria�

Ivo Marinchev1 and Leoneed Kirilov2

Abstract – A Computer System for solving Multiple Attribute
Decision Making Problems (MADMP) is presented in the pa-
per. It is assumed that the set of alternatives is explicitly known
and finite one. The attributes are assumed to be given as nu-
merical values. The system incorporates some of the well-known
and classical methods for solving MADMP. These are methods
ELECTRE, PROMETHEE. It also includes the RDM (Refer-
ence Direction Method).

Keywords – decision making, multiple attributes, multiple crite-
ria, JAVA

I. Decision Making with Multiple Objectives
and Decision Support

Multiple Criteria Decision Making (MCDM) is a choice
among a set of decisions/variants/alternatives made by
an expert on given problem according to multiple crite-
ria/objectives/goals. The expert is called Decision Maker
(DM). The set of alternatives is generated from multicriteria
model according to given rule. Usually it is an optimization
procedure. The multiple criteria models are natural general-
ization of single criteria ones. The set of objectives is opti-
mized in total. For more details, different models, and ap-
proaches for solving them the reader can refer to [1,6,7].

Decision Support System (DSS) is every interactive com-
puter system designed to support the process of Decision
Making (DM) [8]. Its basic purpose is to support but not
to substitute the DM in the process of the decision making
(DM). The DSS has three basic components:

1. Model;

2. Optimization module(s) (solver);

3. Man-machine interface or shortly interface.

The model which is usually a mathematically one, is hid-
den for the user. The analyst makes the choice of the model.
The analyst also chooses a solving method, constructs a suit-
able model for given problem with the help of the DM. He
makes the conception for the DSS.

The optimization module implements one or more meth-
ods for solving the model. For general purposes a sufficiently

�The work report in this paper has been partially supported by Project
IIT-010051 “Advanced methods and tools for knowledge representation and
processing” and Project IIT-010049 “MCDM methods”.

1Ivo Marinchev is with the Institute of Information Technologies, Bul-
garian Academy of Sciences, Acad. G. Bonchev Str., Bl. 29A, 1113 Sofia,
Bulgaria. E-mail: ivo m@iinf.bas.bg

2Leoneed Kirilov is with the Institute of Information Technologies, Bul-
garian Academy of Sciences, Acad. G. Bonchev Str., Bl. 29A, 1113 Sofia,
Bulgaria. E-mail: lkirilov@iinf.bas.bg

general model is selected/constructed. The latter is solved by
appropriate method(s). But when trying to solve real prob-
lems for real users a modification of a model is done and pos-
sibly a modification of a method to solve it. All mentioned is
a responsibility of an analyst in cooperation with the DM (an
expert of a given problem).

An interface is an important element of a DSS. At first, it
is viewed from the DM. Therefore it has to be sufficiently
attractive. Sometimes one DSS could be chosen on the base
of its interface. The interface has to be full of matter and
convenient (user-friendly).

Usually an input/output/editing module is also available to
the DSS. The following natural requirement follows from the
said above.

If one DSS is designed for solving a very specific problem,
then it is not easy to use it for another problem without mod-
ification. On the other hand, if it solves a general model, then
sometimes it would be necessary to customize it for solving
certain real problems.

Usually a sufficiently general model is realized that can
solve a number of problems, for example – linear model, or
nonlinear, or integer, etc. Such DSS we name universal sys-
tems. The other class DSS we name specialized systems. The
user uses such DSS to solve his/her problem. The analyst
constructs a model and an appropriate method. Maintenance
in the future is provided.

Multi-Criteria DSS (MCDSS) is a DSS with multi-
objective model(s). Multiple objective models are general-
ization of a single objective ones. But are they better alterna-
tive? What are their disadvantages?

One such disadvantage is related to multi-objectivity. This
leads to non-uniqueness of the produced optimal solutions in
the objective space. Indecision arises about the ”best” solu-
tion. The question is, what is better to the DM? To use single
objective model with one optimal solution which could be
very close to real solution or to use multi-objective model
with a set of solutions. The DM has to choose one of them
on the base of compromises.

The other question is about convergence of multi-objective
methods. This subject is not investigated completely. This
is compensated by the fact that one DM could intuitively
find satisfactory solution for a small number of iterations.
Most multi-objective DSS provide tools for avoiding cycling.
Single-objective methods are well studied for convergence as
a rule. But when trying to solve real problem the question is -
to use complicated model without guarantee for finding opti-
mal solution or to use simple model with optimal but not real
solution.

359



Interactive Computer System for Solving Problems with Multiple Criteria1

Further, most real DMs are indecisive to use MCDSS
in their activities. The available MCDSS are experimental.
They can be used to prove the efficiency of a given method
or they can be used for educational purposes. Some of them
are called commercial according to their authors but not by
the software companies [3].

The conclusion from the above is that MCDM approach
still has not taken its place among other optimization ap-
proaches for solving real problems.

II. Multiple Attribute Decision Making

Multiple Attribute Decision Making (MADM) is one of the
two major fields of Multiple Criteria Decision Making. The
other one is Multiple Objective Mathematical Programming.
In MADM it is assumed that the feasible set consists of a
finite number explicitly known alternatives. A best one has
to be chosen according to the set of � (� � �) objectives [1].

Thus, the problem has simply the matrix formulation of
dimension ��� �� – decision matrix, where the elements � �� ,
� � �� �� ���� � and � � �� �� ���� � are the values of �-th al-
ternative according to the �-th attribute (objective). We as-
sume that the rows of a matrix form the alternatives and the
columns form the objectives.

A number of approaches are available for solving this
problem. They can be classified according to the type of in-
formation required by the DM and its basic features, and ac-
cording to the strategy used to find solution(s). Some basic
approaches can be found in [2].

What is the best method for solving MADM is a “non-
sense”. The choosing of a method depends on the nature of
the problem solved, on the preferences of the Decision Maker
(DM), and other factors.

A number of computer systems for solving MADM prob-
lems (MADMP) are available. Note that the users bet-
ter know these problems and respective computer sys-
tems than the MCDM problems. Also commercial systems
for this class dominate. But the accent is mainly on the
method implementation without taking into account the user-
friendliness of the interface. Example of such well-known
systems are ELECTRE I-IV [9,10], PROMCALC and GAIA
[11, 12], TRIMAP [13]. Also EXPERT CHOICE of Saaty
[14] – an implementation of Analytic Hierarchy Process, pro-
posed by the same author.

In this paper we present a Decision Support System (DSS)
for solving basic problem of MADM. It incorporates a num-
ber of well-known, classical and effective methods for their
solving. These are ELECTRE and PROMETHEE methods
[3,4]. It also includes Reference Direction Method (RDM)
[5]. As it is known, RDM is basically designed for solving
Multiple Objective Mathematical Programming Problems.
Here a version for MADM problems is realized.

The reason for choosing such method is that most meth-
ods for solving MADM are non-interactive. Also the input
information, requested by the DM, has not clear interpreta-
tion for him/her. The proposed result (alternative(s)) has not
explicit connection with the input information. On the other
hand, most Interactive Methods (IMs) have clear and simple

interpretable dialog. After that a series of solutions are gen-
erated. If the compromise solution is not among them, the
process repeats.

The ELECTRE method for example uses the following
strategy for searching best alternative. On the base of a set
of weights (input parameters) for each attribute ELECTRE
constructs “outranking relationship”. This means that for two
nondominated alternatives A and B (that are incomparable in
general) the DM could accept for example A to be more ac-
ceptable than B. The result is that:

1. The dominated alternatives are simply eliminated;

2. The nondominated alternatives are outranked, i.e. a sub-
set of nondominated alternatives is presented to the DM.
In the ideal case this is one alternative.

ELECTRE with its simple logic, full using of information
in the decision matrix is one of the best methods [2].

III. Motivation for Selecting Java Technologies
for Implementation of Our System

We have implemented our system using Java programming
language. The reason of making this decision is that Java is
not only general purpose programming language but com-
plete development platform that has enormous diversity of
APIs (Application Programming Interfaces) supporting al-
most all contemporary programming technologies. Most of
them are embedded in the standard programming libraries
that are part of any standard compliant Java 2 virtual ma-
chine.

One technology that we consider very suitable for our
system is Java Web Start. It allows launching applications
through the network using recently introduced Java network
launching protocol. Java Web Start applications are exten-
sions of the Java applets technology that have some very use-
ful advantages:

1. Applications can be launched through a web browser
but they no longer depend on the Java virtual machine
built in it, hence they are not restricted to Java 1.1
which is default JVM embedded in the Internet Explorer
browser (i.e. when no Java 2 plug-in is used).

2. Applications are cached locally and on any subsequent
activation they are started from the local hard drive. At
the same time the system launcher checks their web
site whether new version is available. If so it down-
loads the newer version and replaces the old one with it.
This solves the issue with versioning (supporting many
different versions of a certain application or its compo-
nents) in a very graceful manner.

3. Like Java applets, Java web start applications are exe-
cuted in the secure sandbox that isolates them from the
local system resources. This restriction protects the user
from executing malicious code. But Java web start tech-
nology allows restricted (user confirmation is required)
access to local file system to store any persistent data on
it. This solves the big issue with privacy because users

360



Ivo Marinchev and Leoneed Kirilov

often prefer keeping their data locally and not giving
access to it to anyone else.

Indeed, Java Web Start technology was one of the main
motives in selecting Java technologies for the implementa-
tion of our system. Although the current version of it is de-
veloped as a stand-alone application in the future it will be
very easy to separate it in two components according to the
client-server computational model. The thin client compo-
nent implementing user interface and user interactions code
and server component performing all numerical computa-
tions. The client component will be Java web start applica-
tion that will be executed on the user’s local machine. The
server component will solve optimization tasks sent by the
client components and will return the final results.

And last but not least is Java’s cross platform compatibil-
ity. The language completely justifies Sun’s “Write once, run
anywhere” paradigm. We develop our system mainly on the
Windows workstations, but the final system can be deployed
and used on any Java 2 enabled platform – Windows, Linux,
FreeBSD, Solaris, Mac OS, etc. At the same time client part
and server part can be executed on different operating system
allowing any available system to be used as a client or server.

IV. System Architecture

Current version of the system is implemented as a stand-
alone Java application. It uses Swing library for graphic user
interface (GUI). We have selected this library because it sup-
ports (and enforces) the use of the model-view programming
model in user interface programming. The later allows clean
separation between the internal data structures (data model)
and processing and their visual representation and user inter-
actions with them.

Internally our implementation is organized according MV
(model-view) architecture, which is supported by the GUI li-
brary. The basic idea behind this architecture is that every
entity that the program processes is represented with some
sort of internal model – a collection of interrelated data struc-
tures. This internal model has one or more views associated
with it. Every view is a user interface component that ren-
ders the model on some sort of external device (usually mon-
itor screen). The separation between data processing and data
visualization has many advantages. The most important of
them are:

1. One data model can have many views that represent its
different aspects. For example in our program every ta-
ble (from the Tabbed Pane control) is a different view to
the same data model. Every view renders only the data
needed for its corresponding optimization method and
ignores all irrelevant information (parameters).

2. If some data in the data model is changed by the user
(through any of the views associated with it) or by some
processing algorithm, it becomes immediately visible
in all associated views. In practice it is implemented
with the subscription-notification mechanism (listeners
in Java terms) built in the Swing library. By means of
it every view that is registered to receive certain events

Fig. 1. Different views of a single data model

(changes in the data model data in our case) is notified
for the changes. Receiving this event the corresponding
view repaints its canvas to reflect the new data model
state.

3. Data model and view can be changed independently.
The data exchange between the model and the view
is channeled through a well-defined interface (Table-
Model interface) that is part of the Swing library. This
architecture allows the model and the view internals
(data structures and algorithms used) to be changed in-
dependently as far as the interface is properly imple-
mented. So the system is easily extensible and different
peoples can work on the different part of it simultane-
ously without the complications of implementation syn-
chronization.

V. User Interface

We have created the user interface of our system that con-
forms to the following preliminary defined criteria:

1. The interface must organize a lot of information (deci-
sion matrixes) in the least possible space.

361



Interactive Computer System for Solving Problems with Multiple Criteria1

2. The interface must be easily extensible in order to be
possible to add new optimization algorithms with little
efforts.

3. All optimization algorithms (methods) must have uni-
form look and feel.

4. The interface must be easy to understand and use.

In order to comply with these criteria we have selected to
organize the user interface with the use of the Tabbed Pane
(Tab Strip) control. This control is broadly used when a lot of
categorized information has to be confined to single screen
(usually in options and/or preferences dialogs) and it is in
perfect accordance with all specified criteria. Every tab pane
is associated with a given optimization method and displays
its related data in the form of generalized matrix (containing
not only the alternatives and criteria but also all constraints
or parameters used in the corresponding optimization algo-
rithm.

VI. An Illustrative Example

We shall demonstrate the work of the system on the follow-
ing example, described in [2]. A country has to buy a fleet of
jet fighters from the U.S. The Pentagon officials offered the
characteristic information about four models of fighters. The
Air Force analyst team of the country agreed that six char-
acteristics should be considered: F1 – maximum speed; F2 –
ferry range, F3 – maximum payload, F4 – purchasing cost,
F5 – reliability, F6 – maneuverability. The values of each at-
tribute for each alternative are given in table 1.

Table 1. A problem for selection fighter aircraft

Fig. 2. The ELECTRE solution of the problem

As it is seen the 5th and 6th attributes are qualitative. They
are converted to quantitative ones by using bipolar scale (in-
terval scale). Using 10-point scale and setting 0 points to the

minimum attribute value and 10 points to the maximum at-
tribute value we receive the following relations (see for more
details [2]) – Very low (1), Low (2), Average (5), High (7),
Very high (9). Fig. 2 shows the ELECTRE solution of the
above problem.

VII. Conclusion

In the present paper we present decision support system for
solving multiple attribute analysis problems. The main fea-
tures of the system are:

1. It implements several multiple criteria methods (ELEC-
TRE, PROMETHEE, and RDM), allowing the decision-
maker to compare the solutions obtained with the differ-
ent of them.

2. It is implemented in JAVA hence it is completely
portable and can be used on any Java enabled platform
(including web browsers).

3. The unified interface allows the user to work with the
different methods with ease.

References

[1] R. Steuer, Multiple Criteria Optimization: Theory, Computa-
tion and Application, John Wiley & Sons, New York, 1986.

[2] Ch. Hwang, K. Yoon, Multiple Attribute Decision Making:
Methods and Applications, Springer-Verlag, Berlin, 1981.

[3] Ph. Vincke, Multicriteria Decision Aid, John Wiley & Sons,
New York, 1992.

[4] C. Bana e Costa (Ed.), Readings in Multiple Criteria Decision
Aid, Springer-Verlag, Berlin, 1990.

[5] S.C. Narula, L. Kirilov, V. Vassilev, “Reference Direction Ap-
proach for Solving Multiple Objective Nonlinear Program-
ming Problems”, IEEE Transactions on Systems, Man, and
Cybernetics, vol.24, No5, pp.804-806, 1994.

[6] Sawaragi Y., Nakayama H., Tanino T., Theory of multiobjec-
tive optimization, Acad. Press, Inc., Orlando, Florida, 1985.

[7] Miettinen K., Nonlinear multiobjective optimization, Kluwer,
Norwell. USA, 1999.

[8] Eom H., “The Current State of Multiple Criteria Decision
Support Systems”, Human Systems Management 8, 113-119,
1989.

[9] Roy B., Skalka J., “Electre IS – Aspects methodologiques et
guide d’utilization”. Document du Lamsade 30, Univ. Paris
Dauphin, 1984.

[10] Skalka J., Bouyssou D., Bernabeu Y., “ELECTRE III et IV:
aspects methodologiques et guide d’utilization”. Document
du Lamsade 25, Univ. Paris Dauphin, 1984.

[11] Mareschal B., “Weight Stability Intervals in Multicriteria De-
cision Aid”, European J. of Operational Research 33, 54-64,
1988.

[12] Mareschal B., Brans J., “Geometrical Represenation for
MCDA”, European J. of Operational Research 34, 69-77,
1988.

[13] Climaco J., Henggeler Antunes C., “TRIMAP: an Interac-
tive Tricriteria Linear Programming Package”, Foundations
of Control Engineering 12(3), 101-119, 1987.

[14] Saaty T., The Analytic Hierarchy Process, McGraw-Hill, New
York, 1980.

362


