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Abstract – This paper outlines the basic concept of fault detec-
tion and isolation (FDI), i.e. fault diagnosis in dynamic systems
based on analytical process models. It gives a brief review of the
most important approaches in literature.
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I. Introduction

Within the last two decades there has been increasing inter-
est in the field of fault diagnosis both within the academic
community and in industry. The increasing complexity of
automatic control systems and their use in safety critical ar-
eas such as flight control and chemical and power plants has
helped to fuel this interest. An undetected fault in such a sys-
tem could often result in dire consequences and the vast array
of data which complex system generate can make in difficult,
if not impossible, for operators to assess the location and na-
ture of a fault. Automated fault diagnosis has an important
role both in systems such as flight control, where automatic
reconfiguration of sensors and control systems can be carried
out, and with process management, where the role of a fault
diagnosis system is more one of information processing and
filtering with the final decision and choice of action being
performed by a human operator.

Away from the safety critical areas, fault diagnosis is also
attracting interest from those wishing to improve productiv-
ity and reduce plant downtime. The knowledge of the state of
a plant can be used to schedule maintenance and allow recon-
figuration or operating point changes to be carried out more
effectively to increase the efficiency of a plant’s operation.
Such a scheme is often termed condition monitoring and can
result in significant decreases in the running costs of plants.

The increase in the need for fault diagnosis systems has
been matched with advanced in computer technology which
facilitates the analysis of large amounts of data. Methods that
would have been computationally infeasible only a decade
age can now be applied in real time.

II. The Fault Diagnosis Problem

Diagnosis is a procedure to detect and locate faulty compo-
nents in a dynamic process. Faults and failures in complex
automated control systems are, in general, unavoidable facts
and they require quick detection, location and identification.
A diagnosis scheme is of importance in, for example, nu-
clear plants, aeroplanes, automotive engines. This is due to
increasing demand for higher performance, higher safety and
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reliability. Different fault detection and isolation techniques
have been developed over the recent years.

A general diagnosis procedure for a dynamic system con-
sists of several tasks. In literature the following steps are sug-
gested.

� Fault detection: Detect when a fault has occurred. That
is often done with a suitable comparison, for example in
parameter estimation, the estimated physical parameters
are compared to their nominal values;

� Fault isolation: Isolate the fault. Primarily to determine
the faults origin but also the fault’s type, size and time.

These two tasks are commonly referred to as FDI (fault de-
tection and isolation), which sometimes is referred to as di-
agnosis and the other way around.

The system to be diagnosed often includes a control loop,
which further complicates the problem. A control loop tends
to hide or mask a faulty component or sensor making it even
more important, in a controlled system, to detect faults. The
control loop can also damp the system’s signals making it
necessary to excite the signals from the system.

We speak of faults and failures in diagnosis. In diagnosis
literature there is a distinction between the two and the defi-
nition can be written as:

Definition 1. A failure suggests a complete breakdown of
a process component while a fault is thought of as an unex-
pected component change that might be serious or tolerable.

Fault diagnosis and fault detection is not a new problem
and before model based fault diagnosis, they were accom-
plished e.g. by introducing hardware redundancy in the pro-
cess. A critical component was then duplicated, triplicate
(TMR) or even quadrupled and a majority decision rule was
then used. Hardware redundancy methods are fast and easy
to implement but they have several drawbacks

� Extra hardware can be very expensive

� It introduces more complexity in the system

� The extra hardware is space consuming which can be of
great importance, e.g. in a space shuttle. Also the com-
ponents weight sometimes has to be considered.

Instead of using hardware redundancy, analytical redun-
dancy can be utilized to reduce, or even avoid, the need
for hardware redundancy. Analytical redundancy is in prin-
ciple the relationships that exist between process variables
and measured output signals. If an output signal is mea-
sured, there is information about all variables that influences
the output signal in the measurement. If the relationships
are known, by quantitative or qualitative knowledge, this
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Fig. 1. Structure of a diagnosis system

information can be extracted and the extracted information
from different measurements can be checked for consistency
against each other.

There are different types of analytical redundancy. Instead
of measuring several outputs, the different output measure-
ments at different times can be compared. If the relationship
between time series of outputs and inputs are known, from
this relationship fault information can be extracted. This kind
of analytical redundancy is called temporal redundancy.

The faults acting upon a system can be divided into three
types of faults.

� Sensor (Instrument) faults: Faults acting on the sensors

� Actuator faults: Faults acting on the actuators

� Component (System) faults: fault acting on the system
or the process we wish to diagnose.

A general FDI scheme based on analytical redundancy can
be illustrated as in Fig. 1, an algorithm with measurements
and control signals as inputs and fault detection as output.

It is unrealistic to assume that all signals acting on the pro-
cess can be measured; therefore an important property of an
algorithm is how it reacts on these unknown inputs. It is also
unrealistic to assume a perfect model; the modelling errors
can be seen as unknown inputs. An algorithm that continues
to work satisfactory even when unknown inputs vary is called
robust. Some approaches give the possibility to achieve dis-
turbance decoupling, i.e. make the isolation decision inde-
pendent of unmeasured disturbances.

III. Advantages of Model Based Diagnosis

This paper outlines the model based diagnosis, i.e. the pro-
cedure of diagnosis based on the mathematical model of
the system. Why is there need for a mathematical model
to achieve diagnosis? It is easy to imagine a scheme where
important entities of the dynamic process is measured and
tested against predefined limits. The model based approach
instead performs consistency checks of the process against a
model of the process. There are several important advantages
with the model based approach.

� Outputs are compared to their expected value on the ba-
sis of process state, therefore the thresholds can be set
much tighter and the probability to identify faults in an
early stage is increased dramatically.

� A single fault in the process often propagates to sev-
eral outputs and therefore causes more than one limit
check to fire. This makes it hard to isolate faults with-
out a mathematical model.

� With a mathematical model of the process the FDI
scheme can be made insensitive to unmeasured distur-
bances, and also feasible in a much wider operating
range.

� It might be possible to perform the diagnostic task with-
out installing extra sensors, i.e. the sensors available for
e.g. control might suffice.

There is of course a price to pay for these advantages in in-
creased complexity in the diagnosis scheme and a need for a
mathematical model.

IV. Quantitative Approaches to Diagnosis

In quantitative approaches the diagnosis procedure is explic-
itly parted into two stages, the residual generation stage and
the residual evaluation stage, as illustrated in Fig. 2.

The residual evaluation can in its simplest form be
a threshold test on the residual, i.e. a test if ������ �

��������	. More generally the residual evaluation stage
consists of a change detection test and a logic inference sys-
tem to decide what caused change. A change here represents
a change in normal behavior of the residual.

The residual generation approaches can be divided into
three subgroups, limit & trend checking, signal analysis and
process model based.

� Limit & trend checking – This approach is the sim-
plest imaginable, testing sensor outputs against prede-
fined limits and/or trends. This approach needs no math-
ematical model and therefore it is simple to use, but it is
hard to achieve high performance diagnosis.

� Signal analysis – These approaches analyze signals, i.e.
sensor outputs, to achieve diagnosis. The analysis can
be made in the frequency domain, or by using a signal

Fig. 2. Two stage diagnosis system
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Fig. 3. General structure of a linear residual generator

model in the time domain. If fault influence is known
to be greater than the input influence in well known fre-
quency bands, a time-frequency distribution method can
be used.

� Process model based residual generation – These
methods are based on a process model. The pro-
cess model based approaches are further parted into
two groups, parameter estimation and geometric ap-
proaches.

The approaches mention here generate residuals which can
be defined as:

Definition 2. A residual (or parity vector) ���� is a scalar
or vector that is 0 or small in the fault free case and ��0 when
a fault occurs.

The residual is a vector in the parity space. This defini-
tion implies that the residual ���� has to be independent of,
or at least insensitive to, system states and unmeasured dis-
turbances.

A general structure of a linear residual generator can be
described as in Fig. 3. The transfer function from the fault

��� to the residual ���� then becomes

���� � ������� ���
��� � ��� ���
��� (1)

To be able to detect the :th fault the :th column of the re-
sponse matrix ���� ����� has to be nonzero, i.e.

Definition 3. Detectability The :th fault is detectable in
the residual if ���� ����� ���

This condition is however not enough in some practical
situations. This leads to another definition,

Definition 4. Strong detectability The :th fault is said to
be strongly detectable if and only if ���� ����� ���

Note that in Definition 4, the frequency� � � is made par-
ticularly important. Which frequency that is particularly im-
portant depends on which type of faults that are interesting.
There are three different types of temporal fault behavior:

� Abrupt, step faults

� Incipient (developing) faults

� Intermittent faults

V. Isolation Strategies

In the case of the strongly detectable residuals, the literature
describes two general methods for isolation,

� Structured residuals

� Fixed direction residuals

The idea behind structured residuals is that a vector val-
ued of residuals is designed making each element in the
residual insensitive to different faults or subset of faults
whilst remaining sensitive to the remaining faults, i.e. if
three faults should be isolate then a three dimension residual
should be designed with components �����, ����� and �����
insensitive to one fault each. Then if component ����� and
����� fire it can be assumed that fault 2 has occurred.

The idea with fixed direction residuals is the basis of the
fault detection filter (FDF) where the residual vector get a
specific direction depending on the fault that is acting upon
the system.

VI. Robustness

One problem, as was noted earlier, is that unmeasurable sig-
nals often act upon the system plus the influence by mod-
elling errors. This makes it hard to keep the false alarm rate
at an appropriate level. This problem is called the robust-
ness problem and a diagnostic algorithm that continues to
work satisfactory, even when subjected to modelling errors
and disturbances, is called robust.

Since the ideal situation never occurs in a real application,
the robustness aspect is one of the most important issues
when designing a diagnosis system. The methods to tackle
the robustness problem can be divided into two categories

� Robust residual generation, active robustness

� Robust residual evaluation, passive robustness

Robust residual generation methods strive to make the
residuals insensitive or even invariant to model uncertainty
and disturbances, and still retain the sensitivity towards
faults. There are two different types of disturbances, struc-
tured and unstructured disturbances. If it is ”known” exactly
how a disturbance signal influences the process it is called
structured uncertainty and this high degree of disturbance
knowledge is enough to actively reduce or even eliminate the
disturbance influence on the residual. However if no knowl-
edge of the disturbance is known, no active robustness can be
achieved.

However, it is possible to increase robustness in the fault
evaluation stage, i.e. in the threshold selection step, for ex-
ample by using adaptive threshold levels or statistical decou-
pling. This is called passive robustness. It is not likely that
one method can solve the entire robustness problem; a likely
solution is one where disturbance decoupling is used side by
side with passive robustness.
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VII. Model Structure

To proceed in the analysis of residual generation approaches,
an analytical model is needed. A state representation of the
model is given with the following equation:

����� � 
������ �����

���� � ������� ����� (2)

The linear (time-continuous) state representation

����� � ����� ������

���� � ����� ������ (3)

As was noted earlier, there are three general types of faults:
sensor (instrument) faults, actuator faults and component
(system) faults. There are also uncertainties about the model
or unmeasured inputs to the process. If these uncertainties
are structured, i.e. it is known how they enter the system dy-
namics, this information can be incorporated into the model.

In the linear case and model uncertainties are supposed
structured, the complete model becomes

����� � ����� ������� � 
����� ��
���� ��	���

���� � ����� ������ � 
���� (4)

where 
���� denotes actuator faults, 
���� component faults,

���� sensor faults and 	��� disturbances acting on the sys-
tem. � and � is called the distribution matrices for 
����
and 	���.

VIII. Parameter Estimation

Process model based residual generators could be parted
into two approaches: parameter estimation and geometric ap-
proaches.

A parameter estimation method is based on estimating im-
portant parameters in a process, e.g. frictional coefficients,
volumes or masses, and compares them with nominal values.
The typical parameter estimation diagnosis method can be
outlined with three steps

� Data processing, with the help of the model and mea-
sured output data, model parameters can be estimated

� Fault detection, which includes a comparison between
the estimated parameters and the nominal values

� Fault classification, in the case of fault presence, isola-
tion of the fault source is the final stage in a parameter
estimation method.

IX. Parity Space Approaches

Geometric approaches to residual generation are called par-
ity space approaches because they generate residuals that are
vectors in the parity space. The methods can be divided into
open- and closed-loop approaches. In an open-loop approach
there are, as the name suggests, no feedback from previously
calculated residuals.

The idea behind closed-loop approaches, i.e. observer base
approaches, is to use a state estimator as a residual generator.
There are a number of approaches suggested in literature like

� State observers

� Fault detection filter

� Unknown Input Observers

– By parity equations

– By Kronecker canonical form

– By eigenstructure assignment of observer

Note that these are methods to design the residual genera-
tor. Several of these designs may result in the same residual
generator in the end.

X. Summary of Approaches in Literature

To summarize the relationships between the different diag-
nosis methods a tree-structured is presented in Fig. 4. The
different residual generation methods are related as in Fig. 5.
All these methods have their advantages and disadvantages
and it is likely that in a complete diagnosis application sev-
eral of these methods will be used.

The presentation done here is in no way complete as there
exist numerous of approaches, e.g. the neural network ap-
proach.

Fig. 4. Categorization of FDI methods

Fig. 5. Categorization of residual generation methods
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