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Comparative Analysis of Some Discrete-Time Sliding
Mode Chattering-Free Control Algorithms

Bojan T. Milosavljevi¢tand Cedomir Milosavljevi¢?

Abstract — This paper performs a comparative analysis of three
discrete-time sliding mode control algorithms that tend to re-
duce chattering in the controlled variables. First, a brief re-
view of each algorithm isgiven, based on theoriginal papers. In
order to compare presented algorithms, computer simulations
have been carried out prior to verify their robustness features.
Therobustnesstests are not limited to parameter uncertainties
and external disturbances only, but robustness to the existence
of unmodelled dynamics is also considered. Simulation results
reveal the best performance algorithm.
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I. Introduction

Variable structure systems with sliding mode theoretically
possess very desirable features, such as robustness to con-
trolled plant parameter variations and to external distur-
bances in very wide range, simple definition of requested
motion dynamics, being described by differential equations
of lower order than one of the controlled object, high com-
patibility of modern electronic components and devices to
the requests of such a control etc. However, in a real sys-
tem, there exists parasitic high frequency motion around the
sliding surface, the so-called chattering. This phenomenon
exists due to discontinuities, high gains, sampling effects
and finite switching speed in the system. It can cause dam-
age to actuators or the plant. There are essentially two ways
to overcome this problem. One way is to use higher order
sliding mode, and the other way is to add a boundary layer
around the switching surface and use continuous control in-
side the boundary. The problem with the first method is that
the derivative of the certain state variable is not available
for measurement, and therefore methods have to be used
to observe that variable. A modification of this method was
presented in [1], where the control algorithm is still based
on state- and control input derivatives, but combining the
equivalent control method and Lyapunov theory, direct use
of those variables was avoided. Therefore, it was possible to
achieve a continuous control input and thus reduce chatter-
ing without observing any variable. In the second method,
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it is important that the trajectories inside the boundary layer
do not try to come outside the boundary after entering the
boundary layer.

A number of algorithms can be found in papers based on
one of those techniques. Most of them attempt to ensure ro-
bustness of the system to parameter uncertainties and exter-
nal disturbances only. Incomplete knowledge of the system
dynamics is very common in engineering practice. Therefore
it is very important to provide robust algorithms to the ex-
istence of unmodelled dynamics. Then it would be possible
to simplify the control design being applied to lower-order
system. This paper provides a comparative analysis of three
control algorithms regarding robustness properties.

I1. Algorithm 1

The following discrete-time system is considered in [3]:

X(k + 1) = Ax(k) + AAX(k) + bu(k) + f(k)

y(k) = h"x(k) (1)
X is the nx 1 state vector, A is an nxn matrix, b and h are
nx1 vectors, u is the system input and y is the system out-
put. In this equation, the nxn matrix AA represents param-
eter uncertainties and the n x 1 vector f denotes external dis-

turbances, satisfying matching conditions. The time-varying
switching surface is defined as follows:

s(k) = c"x(k) . O]

Disturbances and parameter uncertainties are bounded so
that the following relation holds:

di < d(k) = T AAX(K) + cTf(k) < d,, . (3)

The lower and upper bounds d; and d,, are known con-
stants. The average value of d(k) (do) and its maximum ad-
missible deviation (§4) are introduced as follows:

d; + dy dy — dy
== da = 5 - 4)

First, the required evolution of the time-varying switching
surface s(k) is specified:

do

k
s(k+1) = d(k) —do+sa(k+1) = > [s(i) — s4(i)] . (5)

=0
The evolution of the time-varying hyperplane is
k*—k 5(0)
E=0,1,. k* k* < —
sty =4 20 F=0LELE <o g
0 k>k*
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The constant £* is a positive integer chosen by the de-
signer in order to achieve good tradeoff between the fast con-
vergence rate of the system and the magnitude of the control
u required to achieve this convergence rate.

Then a control law (k) is proposed which drives the sys-
tem in such a way that the variable s(k) actually changes
according to the specification:

u(k) = —(ch)*l{cTAx(k) +dy — sa(k+1)

.
+ 3 s0) = sa@ ) O
i=0

This control design procedure is referred to as the reaching
law approach.[2]
As it is shown in [3], the following holds:

|s(k) = sa(k)| = [d(k) = d(k = 1)| < Aq

Eq. (6) @)
= |s(k)| < Da, k> E

A4 denotes the disturbance-rate and the parameter- change-

rate limit.

1. Algorithm 2

In [1] the sliding mode motion design is proposed generat-
ing a continuous control input, thus eliminating chattering.
Neither the explicit calculation of the equivalent control nor
high gain inside the boundary layer is used. The algorithm is
performed by means of the Lyapunov theory and is applied
to a nonlinear system shown in the regular form:

% = f1 (X1, X2), % = fa(X1,X2) + Ba(X)u + B2(X)d(¢) ;
X; ERPT™ X2 € R ,uEe R feFT 9
rang [B2(X)] =m .
The components of control input and of the vector (dx » /dt)
are assumed bounded:
w; € [wi, ;o Wi .o
(dx2/dt) € [amin, ¥maz], (E=1,...,m) . (10)
The motion of the system is restricted to belong to the mani-
fold S
S = {x: p(t) — 0a(X) = o(x,t) = 0} ;

T m
O, = [0a170a27 "'7gam] eF ’

QOZ—' = [@al,‘Pa%---,QDam] S Fm .

oqi(t) and @q;(t), (1 = 1,...,m) are continuous functions.
ai(t) and their first time-derivatives are bounded. These
functions can be interpreted as the references to be traced
by selected combinations ¢ ,;(x) of the system’s states.

For the system described by Egs. (9), (10), and (11), the
following design procedure is adopted:

(11)

e select a Lyapunov function candidate v (o), such that, if
the Lyapunov stability criteria are satisfied, the solution
p(t) — 04(X) = 0 is stable on the trajectories of the
system described by Eqgs. (9), (10), and (11);

¢ select a form which the time-derivative of the Lyapunov
function should satisfy, and find control « such that se-
lected form is achieved on the trajectories of the system
described by Egs. (9), (10), and (11);

e find the equations of motion on the selected manifold
with designed control.

The selection of Lyapunov function should be as simple as
possible; hence, the first choice is a quadratic form

UTO'

V= ——.

2
According to the Lyapunov theory, the solution o(x,t) = 0
will be stable if the time-derivative of the Lyapunov function
can be expressed as

(12)

d
d—’; — v™Do, D> 0. (13)
It is shown in [1] that control can be calculated as
u = sat [ueq + (B2) 'Do] (14)

and, using equality Bou., = Bou+do/dt, control « is finally
u(t) = sat {u(t) + (By) ! <D0’ + %—j)] , (15)
t=t +A,A—=0.
Here A denotes the time-delay necessary for the calcula-
tions.

For the system given in the regular form, the following
model holds during the sliding mode:

dx

dt
Discrete-time versions of Eqgs. (15) and (16) can be written
as

w(kT) = sat [u(kT ~T)

(16)

+ (By) ! (Do(kT) + d”(kT))] (17)

dt
o(kT) = (I = TD)o (kT — T) (18)

T is the sampling interval, | is the identity matrix. If matrix
D is selected diagonal with d;; = 1/T then Eq. (18) equals
zero and sliding mode will occur after finite number of sam-
pling intervals. Further simplifications can be introduced by
substituting do (kT") /dt by its first order approximation

w(kT) = sat [u(kT ~T)

+ (BoT)"! ((| +TD)o(kT) — o (kT — T))] . (19)
IV. Algorithm 3
In [4] a linear time-invariant system is considered:
X = AX(t) + beu(t) (20)
with scalar sample & hold control
u(t) =uw(kT), kT <t < (k+ 1)T,
ke N°=1{0,1,2,..}, T >0. (21)
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An equivalent discrete-time representation is then for the per-
turbed system

SX(KT) = As(T)X(KT) + As(T)X(KT)
+ bs(T)u(kT) + ds (TYF(KT)  (22)
%~ Ox(kT) = [X((k + DT) — z(kT)] /T (23)

and AA;(T) € R™ ™ is a matrix of uncertainties, d;(T) €
Rrx1 f(kT) is a bounded external disturbance with

[f(kT)| < p, Yk € N©. (24)
The matching conditions are assumed, and therefore
ds(T) = bs(T) . (25)

The goal is to impose s = 0 as the sliding mode hyperplane
s = Cs(T)X, cs(T) € R*™ . (26)

The following assumption ensures that the relative degree of
variable s, seen as an output, with the respect to the control
signal u is one

Cs (T)bs(T) = 1. @7)
The reaching law is defined as follows
ds(k) = —®(s(k), X(k)) ,
5s = w o (T)ox(k), (28)
_ | x(R) ] _ x(k)
X(k) = [ (k) } = { x(k - 1) ] )
by definition X(0) = x(0) , (29)
The control « is then
u(k) = =Cs(T)As(T)x(k) — ®(s(k), X(k)) . (30)

According to the theorem from [4], it is sufficient that the
following conditions for ® are met:
®(s,X) =s/T, X € (T,
VT (dm[X[|L + p)/1s] <T®(s,X)/s <1,
X¢S(T)7'7>175>N7 772>dm-

The following function satisfying these conditions is pro-
posed in [4]

(1)

#(5,X) = min (. gl + 11X ) sanGe)

0<qT' <1, r>dpy, 0>vu. (32)
The vicinity of the hyperplane is defined by
S(T) = {x € R
_ ol +rT|X|l, +rT|IX]],
s = [es(T)x| < T JE)

c=9,¢=0,r=0.011, (y =1.1).

V. Comparison of Algorithms

In order to compare the proposed algorithms, each of them is
applied to the model of a DC motor with neglected electric-
time constant, also used in [4] for the verification purposes

33'1 = T2, leg = —16372 — 680u , (34)
where x; = 0; — 6 (8 is the angular position of the rotor
shaft), z» = —w (w is the rotor velocity), and « is the con-

trol signal. Corresponding to the matrix representation of the
Eg. (20), it can be written

Acz[g —116}’@:{—%6]:[—280]'(35)

The Eq. (34) with external disturbance included, according
to Egs. (22), (25), satisfying Eq. (24), is as follows

1:1 = T2, 1:2 = —161‘2 - GSO(U - f) 5 (36)

f=u(2-t-1). (37

The adopted external disturbance waveform f of Eq. (37)
with p = 0.7 (the same as in [4]) is shown in Fig. 1.

orl

07
Fig. 1. The external disturbance waveform f

A relation between two discrete representations (given by
the Eqgs. (22) and (1)) should be established to evaluate the
external disturbance in the Eg. (1) in the form f(kT) =
[0 fl]T. It can be performed easily after rearranging the
terms in the Eqg. (22) and dividing by T'(sampling period)
both sides of the equation; hence, the following holds

A—1 b AA
A(;:T,bng, AAézTa (38)
b(;f:%. (39)

The discrete-time representation parameters expressed in the
form of Eq. (1) for the system described by Eq. (36), are [5]

1 1_16(1 —exp(—16T"))
0 exp(—16T)

A =exp(A.T) =

T
b= /exp(ACT)deT = (40)
0

§(1 — 16T — exp(—16T))

= | 32
%(1 — exp(—16T"))

The reference value 64 is 100 rad. The desired system re-
sponse is related to the degree of exponential stability, being
exp(—aT), a=15s~t. According to the procedure described
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Fig. 2. Algorithm 1: time response, steady-state error and control
signal respectively
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Fig. 3. Algorithm 2: time response, steady-state error and control
signal respectively
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Fig. 4. Algorithm 3: time response, steady-state error and control
signal respectively

and applied in [4], the sliding hyperplane parameters c; are
as follows

T = 0.4ms : ¢s(T) = [—0.0220632 — 0.00147088],
¢s(T)As(T) = [0,0.00146618] ;
T =2ms: c5(T) = [-0.0220808 — 0.00147204], 41)
¢s(T)As(T) = [0,0.00144863] ;
T =10ms: cs(T) = [-0.0221655 — 0.00147758],
¢s(T)As(T) = [0,0.00136288] .
To apply the Algorithm 1, Eq. (40) is used, along with
_ b -1 __ -1 __ 1
b,j =T = (C(;bé‘T) = (1 T) =7 (42)
and a certain approximation, arising from Egs. (38) and (41)
CsAsT = C5(A — |) = C;A = (C,jA,j)T +cs~cs. (43)
Finally, the control signal is generated by
1
u(k) = —5[s(k) —sa(k +1) + Z(K)],  (44)
Z(k)=2Z(k—1)+ s(k) — sa(k) . (45)

The choice of k* is governed by the desired sliding-surface
reaching time, being ¢,, = 120 ms. Hence
* tT‘
k* = T

The simulation results for the Algorithm 1, applied to the
perturbed system of Eq. (36), are given in the Fig. 2. The
system response waveform is in the Fig. 2a, and steady-state
error in Fig. 2b, but for three different sampling periods, the
same as in Eq. (41). The control signal is presented in the
Fig. 2c.

(46)

The steady-state error of the controlled variable 2, can
be evaluated by means of Eq. (8). A, can be expressed as
(Egs. (3), (39) and (37))

Eqg. (3) Eqg. (39)
Ad = CQAfl = C2b§TAf
= cobsT (f () |e=kr — f(O)li=k—1)7) (47)
Eq. (37)

ANy = cobsT - uT = cobspuT? .
Since in steady state 2, — 0 and therefore |s(k)| ~ ¢121

21~ ZosuT? . (48)
C1

The simulation values from Fig. 2b match the values from

Eq. (48). Thus the simulation scheme and the Algorithm 1

itself are verified.

Control design according to the Algorithm 2 is not based
on the discrete-time representation like the other two algo-
rithms. The continuous-time system (36) is already in the
regular form [6]. That is why ¢ is chosen to be ¢; = 1,
and to keep the same system response features, c¢; takes
the value of co/c; from the Eq. (41). It is also chosen that
di; =1/T = TD =1, and according to the Eq. (19)

w(kT) = satfu(kT—T)+(bsT) *(2s(kT) —s(kT—T))]. (49)

The simulation results shown in Fig. 3 are as expected.

The Algorithm 3 is designed according to the Egs. (30),
(32) and (33) and simulation results shown in Fig. 4 verify
the simulation scheme and the algorithm itself.
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Fig. 5. The effects of unmodeled dynamics in the Algorithm 2:

— First two rows: time responses for respectively Ti=0.01s, T=10ms;
Ti=(1/32)s, T=10ms and Ti=(1/32)s, T=2ms

— The third row: control signal u and time response for Ti=(1/32)s
and T=0.4ms
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Fig. 6. . The effects of unmodeled dynamics to Algorithm 3:

— First two rows: time responses for respectively Ti=0.01s, T=10ms;
Ti=(1/32)s, T=10ms and Ti=(1/32)s, T=2ms

— The third row: control signal u and time response for Ti=(1/32) s
and T=0.4ms

Unmodelled dynamics is introduced in the system as an
additional pole with time-constant 7'; and the Coulomb fric-
tion. The simulation of the corresponding system with Algo-
rithm 1 could not finish because going to infinity. If the Al-
gorithm 2 is applied, the simulation results are those shown
in Fig. 5.

The simulation results for Algorithm 3 are shown in Fig. 6.

Obviously, it can be seen from Figs. 5 and 6 that Algo-
rithm 3 is better solution if chattering amplitude reduction is
the most important task.

382

The simpler version of Algorithm 1 (without sums in the
Egs. (5) and (7)) provides the sliding surface steady-state er-
ror of |s(k)| < d4. It should be emphasized that the system
controlled by this version of the Algorithm 1 is stable with
the chattering amplitude greater than in two other cases.

VI. Conclusion

Three possible control algorithms are compared regarding
chattering reduction. Their robustness to parameter uncer-
tainties and external disturbance presented in the original pa-
pers are verified. Their different behaviors regarding chatter-
ing reduction at presence of unmodelled dynamics are treated
in this paper and the best performance algorithm is proposed.
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