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Two Stages Piece-Wise Linearization Method for Inteligent
Transducers
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Abstract – This paper presents the intelligent transducers suit-
able linearization methods, considering practical implementa-
tion. New method is proposed. By one look-up table, it trans-
forms x-axis first, and then by other look-up table performs
classic piece-wise linearization. Based on the example of inverse
NTC characteristic, new method is compared with polynomial
approximation and standard piece-wise linearization.
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I. Introduction

Non-linear transfer characteristic of the sensor is possible
to compensate with many software methods in intelligent
transducers: segment linearization (”piece-wise”) [1] and [2],
polynomial approximation on the one or more segments, or
approximation by the rational functions [3]. This enables
the use of strong non-linear sensor with stable characteristic.
Speed and simplicity of the implementation are very impor-
tant during the obtaining of the response of the linearization
methods, till the linearization tables and needed coefficients
are determined by the help of PC, with use of much more
resources.

In the intelligent transducers processor power and mem-
ory for placing program, linearization table and temporal
variables are limited [4]. This gives advantage to the meth-
ods which are appropriate to implement in mathematics with
fixed point, i.e. piece-wise linear approximation versus poly-
nomial.

In the estimation of the quality of the linearization method
the following parameters should be considered:

� achieved accuracy of the linearization, like least mean
squares deviation, or maximal deviation of the whole
linearization range.

� time needed for response calculation in the device
which does the linearization.

� used memory space as in EPROM for the linearization
table or coefficients, so as in RAM for the saving of the
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Bul. Oslobodjenja 124, 16 000 Leskovac, Serbia

temporal calculation results.

� the use of the program memory for the implementation
of the linearization procedures.

II. Standard Piece-Wise Linearization

All segmental linearizations and all graphic generation with
appropriate error, presented in this paper, have done with
specific purpose developed program for PC. Standard Piece-
wise linearization is carried out in such a way that the range
of input variable is divided into desired number of segments
and the optimal line found for each segment by the method
of least mean squares deviation. In order to obtain the con-
tinual transmition function some of the linear segments are
connected in such a way that for the ordinate value on the
border of segments the mean value of the ordinates adjacent
lines are taken. It can be noticed that for the line determina-
tion the criteria of least mean squares deviation on segment is
chosen, and the methods of the linearization are compared on
the bases of maximal deviation. As for the all considered ex-
amples that are gained the maximal error is a little bit bigger
than that which is optimally possible. On the other side, when
the points of calibration are gained by real measuring, which
itself considers the existence of less or bigger uncertain of
the measuring results, the method of the minimal square is
very appropriate in practice.

Piece-wise linearization gives very good results for almost
all transferable characteristics and it is also used when the
output values depend on two variables, for example for the
temperature compensation as influential value [2].

As the example of the transferable function with distinc-
tively non-linearity, this paper considers inverse character-
istic of the NTC (negative temperature coefficient) resistant
sensor. One way of temperature measuring by NTC is termis-
tor voltage measuring with constant current (Fig. 1). Result
of the A/D conversion is proportioned to resistance which is

Fig. 1. NTC temperature sensor measuring circuit
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the function of temperature. In order to calculate the temper-
ature for the bases of the conversion results it is needed to
carry out the linearization function, which is inverted termis-
tor NTC characteristic, i.e. function � � �� ���. In the paper
temperature range from 0Æ C up to 100Æ C is considered. In
order to use universal procedures in mathematics with fixed
point, the input and output range of all functions are normal-
ized to lie from 0 up to 65535. The �� variable is propor-
tioned to the ��� conversion result, Eq. 1:

�� � �� � ���� � �� � �� � ���� � (1)

The selection of the amplification, the range of the ���
converter, and conversion results averaging, in order to re-
ject the noise, it can be adjusted that the �� belongs to that
range without additional scaling. After the linearization, final
result of the temperature measurement is obtained by scaling
according to formula ���Æ	� � 
� � �, which enables two
points recalibration.

In the part of small resistances inverse characteristic of the
NTC has very large slope and alteration of the slope. Clas-
sic linearization by 16 segments gives maximum approxima-
tion error about 10% (Fig. 2). It can be seen that for the lin-
earization of the distinctively non-linear characteristics, the
small error of linearization (for example ¡ 1%) demands clas-
sic segment linearization with lot of segments. Strong char-
acteristic non-linearity is often present in the small part of
the input range, and it can be reduced if the input range is
divided on unequal segments. The input data for the appli-
cation of the Piece-wise linearization is the current number
of segments, i.e. the ordinal number of the point in the ta-
ble and the rest of the input value in the segment itself. For
equal segment size these data are easy and quickly found by
integer divide of the input variable with the segmental size.
But, the difference of the segment size causes slow lineariza-
tion method response, i.e. the defining of the current segment
must be done in the loop.

Fig. 2. Standard segment linearization

III. The Two Stage Piece-Wise Linearization
Method

The method presented in this paper keeps simplicity and uni-
versality of the equal linear segment methods, and decreases
total needed number of segments by linearization in two
steps.

On the assumption that polynomial approximation is also
implemented in the mathematics with fixed point, the price of
this approach is the doubling of the calculation time. It can be
compared with the second degree polynomial approximation
on several segments. Concerning the memory space occupa-
tion, if we need 16 segments for the universal segment ap-
proximation, the accuracy will be compared with two-stage
method of 8+8 segments.

The idea of the method is that the transformation of the
x-axis is done before standard linear segment method appli-
cation, so that the parts of the input range with strong non-
linearity are stretched, on account of the rest. The linear seg-
ment table also does this transformation. New characteristic
in the function of transformed input variable is obtained, thus
linear segment approximation can be performed with minor
error than starting characteristic.

On the Figs. 3, 4 and 5 the example of the method by two
times 8 segments is given. On the Fig. 3a function ����� is
shown, i.e. temperature dependence of resistant with trans-
formed abscissa, so that the starting part of the curve is
stretched. After that, this function is approximated by 8 lin-
ear segments. The maximal error of this approximation of the
whole range is 2,5% (Fig. 3b).

Input value is �. After the first transformation by linear
segment table we get � � ����� (Fig. 4), and after the second
transformation of � value, temperature is obtained as Eq. 2:

� � ����� � �������� �� � �� ��� � (2)

Let’s define ��, first. The input range of �� is divided to
desired number of segments (
=8), and for each segment

Fig. 3. Error of transformed curve piece-wise approximation
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Fig. 4. The function which transforms � – axis

Fig. 5. Obtained error of presented method

apart defines maximal and minimal value of the derivation,
and their difference, i.e. �� �

� � �� �

�max � � �

�min�. Numerical
obtained derivation of the �� ��� � can be seen on Fig. 5b.

Hence, the value � is determined by � �
��
���

�� �

� . Knots of

the first function � � ����� has ordinate according to Eq. 3:

�� � �� �� � ���� �

�
�� �

�

�
� ���	�

�
(3)

The values on the �-axis are equidistant arranged as on
Eq. 4 and Fig. 4 - a doted line.

�� � � �

�
���	�




�
(4)

Function �� is monotonous increased, which enables that
one-valued of ����� is kept. It is achieved that the parts of the
characteristic with the large second degree derivate stretch
on the count of the rest of the part, which has been the aim
of this transformation. The first Piece-wise linearization is
stretched 6 times. The transformation of the input variable
from the range of 0 up to 65535 to the same range is also
obtained, which enables the use of the universal linearization
procedure in intelligent transducer.

The Fig. 5a shows the function which is linearized (it’s
equal with the function on the Fig. 2a, the Fig. 5b repre-

sents the derivation of the function, and the Fig. 5c shows
the linearization error. The error is obtained by the lineariza-
tion function shown on the Fig. 3, but the same error is shown
with linear change of the input value �� . On the Fig. 3b the
equidistant vertical lines represent the segment boundaries
which respond to those on the Fig. 5c. The interspace be-
tween those segmental boundaries has been changed caused
by transformation of the �� - axis.

On the Fig. 3a it can be seen that after the first transforma-
tion smooth function � � �� ��� gets ridge points (circled
area) so on them, caused by sudden change of the slope, valu-
able error of linearization can be expected. As to avoid this,
the following procedure is applied: the ordinate values of the
first table, which have large transformation in comparison
with previous one, are rounded to values which correspond
to abscissas of the second linearization table, to amount of

��

�
���	�




�
. In this way ridge points of the function ����� will

coincide with the knots of the second linearization function,
so they will not take in addicted error. Function � � �����
transformed by exposed method is shown in Fig. 4 – full line.

IV. Comparison to Classical Methods

Independent from the linearization methods, it is needed to
consider the way of obtaining the input data, i.e. the way of
the transfer function defining:

� by measuring of the pair of points in the calibration
process, which is a long-lasting procedure for the great
number of points and high accuracy.

� on the bases of the previous knowledge of the physics
of sensor, known functional dependence is used, thus
for the each concrete sensor several constants (at least
the offset and the slope) has to be defined by several
measurements.

In order to increase the accuracy in the real conditions,
disregarding whether the transfer function is defined by the
set of points or known mathematical formula, it is needed to
carry out more measurements than the minimal needed for
the coefficients defining. If the polynomial approximation or
the approximation according to beforehand defined curve is
continued, by the use of the mathematical programs of the
general purpose (MCAD, ORIGIN...) the needed coefficients
can be defined by the iterative methods, concerning as a cri-
teria the minimization of the square error on the whole range
of the input variable.

For the given instance of the NTC temperature sensor, di-
rect dependency of the resistance from the temperature is
known as Eq. 5:

���� � ��� � �
��

�
���	��	� �

�
�
�	�� � (5)

On concrete sample of the sensor in the temperature cham-
ber, by four wired measurement of the resistance by the use
of multimeter HP3478A, the 20 pairs of calibration points
have been obtained, on which base the determined coeffi-
cients��� and � have been defined by the use of the ORIGIN
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program. Afterwards, the inversion function is mathemati-
cally defined, and the input and the output ranges are linearly
scaled to the range from 0 up to 65535. Based on such de-
fined dependence, by the use of the ORIGIN program, the
1000 points of the function � � ����� � has been generated.
Those points are the input data for all linear and polynomial
approximations which have been carried out, and whose ac-
curacy is presented in this paper.

Standard polynomial approximation on the whole range
of the input variable, even of the 9th degree, gives the error
larger than 2%, for the given example of the inverse NTC
characteristic. In the Table 1 maximal error of the piece-wise
polynomial approximation of the second and the third degree
is given. As distinctively non-linearity is on the small part of
the range, even second and the third degree polynomial, on
the small number of the segments, does not give significantly
better results.

Table 1. The maximal errors of the polynomial approximation

Number of segments 4 8 6 32

Second degree 6% 8% 3,5% , %

Third degree 9% 4% ,3% 0,3% 

In the Table 2 results achieved by the standard segmental
linearization are given. The results achieved by the suggested
method (by the two tables with equal number of the seg-
ments) are also given in Table 2. By analyzing the required
memory for the tables, or coefficients of polynomial approx-
imation, classical segment linearization with 16 segments,
should be compared with two-stage method with 8+8 seg-
ments, or approximation by the second-degree polynomial
on 8 segments.

Table 2. The maximal errors of the standard segment approximation
and suggested method

Number of segments 8 6 32 64

Classic segment  7,5% 0% 4,5% ,75% 

Number of segments 4+4 8+8 6+ 6 32+32 

Two-stage method 2,5% 2,5% 0,7% 0, 2% 

For the given example of the distinctively non-linear func-
tion, the suggested method gives significantly better results
than standard segment linearization, especially if the higher

accuracy of linearization is required. It also gives better re-
sults than polynomial approximation, even the third degree,
with easier implementation. The response of the linearization
is obtain by doubled application of the same procedures, thus
negligible larger program memory is required.

V. Conclusion

It is on disposal the whole range of software methods for
the linearization of the transferable characteristics in intel-
ligent transducers. However, for the linearization of the ex-
tremely non-linear characteristics, the accuracy in order of
1% is hardly achieved by the polynomial approximations and
by the standard piece-wise linearization also. We should have
in mind that the linearization has to be carried out by inte-
ger mathematics, or in fixed point, and that in the intelligent
transducers the program memory, as well as the memory for
the linearization tables saving, is very often limited.

Suggested two-stage method is easy to realize even with
the limited processor recourses, and it gives less maximal
linearization error in relation to the polynomial approxima-
tion and standard Piece-wise linearization. Program memory
occupancy needed for the implementation of the lineariza-
tion procedures is only insignificantly bigger than standard
Piece-wise linearization.
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