

&
edi

2

En
ma

3
Tec

Real Time Kernel for Embedded Systems
Emil N. Dimitrov1 Stanimir D. Mollov2, Kristian Dilov3

Abstract – The paper presents the problems connected with a

real-time kernel for embedded systems. The system kernel
building, the system process building and the interactions
between the applied tasks and processing of external events have
been discussed. The developed real time kernel MSPIX, which is
intended for embedded systems, has been analyzed. The results
of the analysis have given an opportunity to state that MSPIX
possesses most of the contemporary real time-kernels features.

Keywords – real-time kernel, dispatcher, system process,

applied task, descriptor.

I. INTRODUCTION

The high requirements to contemporary control systems are
the main precondition for their continuous improvement and
modernization. To decrease the necessary time and resource
expenses, the control systems are realized with a possibility of
quick and easy configuration, reconfiguration and adjustment.
These possibilities are supplied by software of the system. Its
main purpose is to distribute the system expenses among the
control processes. Such a system s is called Operating System
(OS)[1].

Each applied system is designed on the base of OS and
given user’s tasks. On the base of the user’s tasks the
functional purpose of the system is formed. The time of
changing the functional action of the system is reduced. Only
the user’s tasks are replaced, while the basic platform is
unchanged.

II. BASIC CONCEPTS IN REAL-TIME SYSTEMS

The Real Time Operating System (RTOS) is a combination
of the system software, which allows performing a large
number of user’s programs at one and the same time. The
user’s software can interact with external environment as well
as exchange some data with another software.

Fig. 1. Requirement for work in real time

The term “real time” means that the system responds to
each external event in a fixed time interval (Fig.1). The period
Tr, which determines reaction R of the input influence A, is a
variable because of asynchronous character and unpredictable
influence on the computing process. The requirement of work
in real time is reduced to the inequality:

 drar tTtt <+=)((1)
where td is the final time interval for elaborating the reaction
from Real Time System (RTS) [2]. The violation of this
inequality is equal to the system failure.

The problems, which are solved during design of a real-
time system, increase with adding the time co-ordinate. Under
this condition it is necessary to create the real-time operating
system as a multitask system. The multitask system consists
of many asynchronous tasks and communication environment
between them. Each task represents an active logical process,
which is performing a kind of work within the system. In the
common case each event is connected with а definite task.

The real time operating system provides a virtual process
for each task. The virtual process performs the task in parallel
to the others in the system. In the single processing systems
this performance is a pseudo one – parallel or competitive. An
actual parallelism can exist only between the tasks in multi
processing or distributive real-time systems.

The hierarchical structure of the applied system (Fig. 2) can
be divided into two components: a real-time operating system
and applied tasks.

Fig. 2. Hierarchical structure of an applied system

The multitask kernel is located on the lowest level of the

hierarchy. It implements all mechanisms, which support the
multitask mode: task dispatching, the interaction between the
tasks and events control. The kernel “services” are given to
the upper levels in the form of system primitives and system
macro. The system input-output drivers are an additional
component and are used to control the standard peripheral
devices. In contrast to the system drivers, the applied ones are
additionally developed according to the used hardware.

The applied tasks are located on the highest level of the
hierarchy. Their number, composition and character depend
on the specificity of the applied system application.

Trmax

Tr

tr tdta

t - ‘а’
t - ‘r’
t -

a
r
d

event origins
preparing

final time for
 elaborating

reaction
interval

reaction

Applied tasks

System input-
output drivers

Multitask kernel

Applied drivers

Hardware

R
T
O
S

A S
P Y
P S
L T
I E
E M
D

1Emil N. Dimitrov is with the Faculty of Electronic Engineering,
Technologies, TU – Sofia, 1797, Sofia, Bulgaria, E-mail:
m@tu-sofia.bg
Stanimir D. Mollov is with the Faculty of Electronic

gineering, & Technologies, TU – Sofia, 1797, Sofia, Bulgaria, E-
il: smollov@abv.bg
Kristian Dilov is with the Faculty of Electronic Engineering, &
hnologies, TU – Sofia, 1797, Sofia, Bulgaria
399

400

III. SOFTWARE

A. System kernel

The main function of the kernel is to support the multitask

mode. The code of the kernel is the most intensively used
component in the system and in contrast to most of the
drivers, it is a mandatory part of each applied system.
Therefore the kernel must be effective enough with the
requirements of a small memory size.

The purpose of the presented system kernel is to control the
industrial controllers, which are built on the base of MSP 430
produced by Texas Instrument. The system kernel must create
a possibility for competitive tasks performance in real time.
The distribution of the processing time among the tasks is
realized on a priority base by a dispatcher, which consists of
two parts: a system clock dispatcher and an events dispatcher.
The system clock dispatcher used Timer_A built in the
microcontroller. It counts to a defined value and having
reached it, generates a request for interrupt. This request is
used for switching between tasks. After this counting starts
again. The events dispatcher transforms the external
influences in internal circuit events. The effectiveness of this
transformation determines the field of the real-time system
application. There are different methods to implement these
reactions, but the most suitable one is that described above,
which is used to interrupt from input port.

B. Applied tasks and their states

At the time of self-existing the processes in the real-time

system have different states. The change of their state is done
by the system kernel. This process is connected with the
system losses – the processing time, the resource expenses.
Because of this it is necessary to create exact rules for serving
the tasks by the kernel.

At a given time each task in the applied system can be in
one of these states:

- IDLE – the task uses only the memory area, in which
its code is written as a resource;

- READY –the task has at its disposal the necessary
conditions for its performance without the central
processing unit;

- RUN – the task is being performed;
- BLOCK – the task is waiting for setting in some kind

of event or resource discarding;
- WAIT – the task is waiting to pass a period of time;

At the beginning all tasks are in IDLE state. The procedure
for establishment the task in READY state includes: creating
the necessary data structures and stack segment organizing.

The tasks can be interpreted by the kernel as system tables
– descriptors (fig.3). The manipulations, which the kernel can
perform with system tables, are reduces to modify their fields.
Each task has a unique ID, which is stored in the kernel work
area. The kernel defines this ID, when the task is created. In
fact this ID is the pointer to the task source in program
memory. The current state of the task is written in field – Type
and can be one of these enumerated above. The next field
contains the task priority. The contemporary real-time system

has 64 user’s tasks. Because of this the maximum value,
which can be written here is 64. The connection between the
value and priority is straightforward (higher value – higher
priority).

BlockBox

N AME

Fig. 3. Task descriptor

The arrangement of the tasks in the queue depends on the

task priority – field Next. The beginning point of the queue
contains the address pointer to the descriptor of the task of the
highest priority. The fields Message and BlockBox in the task
descriptor are used for communication between tasks, while
the field TimeOut is used to definite the time interval in WAIT
state. In the last field of the task descriptor named Context the
work registers contents is written. These registers are:
program counter, stack pointer, status register and
accumulators.

C. System process

Before inserting a number of applied tasks, a system

process is started in the system that in consequence originates
them. This system process exists and is performed together
with the applied task. Analogous to the applied tasks, the
system process has a descriptor as well (Fig.4).

Fig. 4. System descriptor

The first field of the system descriptor indicates the current
operating mode and can be:

- USER – the interrupts are enabled and there are
premises for task dispatching;

401

- SYSTEM – the system manipulations are performed.
The field TaskMode defines the mode of the active task,

which is usually UNLOCK. The task, which is in LOCKED
mode, cannot be switched by another task and therefore it is
working in a monopoly mode.

The system quantums are generated by Timer_A and
heaping in the 32-bits counter –SysTime field. The system
descriptor contains a pointer to the active task – Runtask field.
It is possible that there is no active task at the moment
(RuntTask = NULL). The pointer OldTask and Redesp are
used for re-dispatching.

The system kernel keeps two system queues. The first one
is the queue of ready tasks, which contains pointers to the
tasks in READY state– SysReady field (fig.5). The second is
the queue of holding tasks (Fig. 6). The arrangement of the
tasks here occurs according to the contents of TimeOut field
of their descriptors. The task with the shortest timeout stays at
the beginning.

Fig.5. Ready task queue

Fig.6. Holding task queue

The last field of the system descriptor contains pointer to

system stack and status register.

D. Dispatchiring

The multitask kernel of the real time operating system

supports a virtual processing unit for each task. Immediately
after starting in the system exists only one virtual processing
unit, which is intended for system process. When the applied
task is creating the system process adds its virtual processing
unit, which is executing in parallel with another tasks. In the
single processing systems the processing unit is only the
resource, which is distributing from the multitasking kernel.
Therefore the dispatcher is a kernel component, which is
distributing the time of processing unit between the ready for
execution tasks.

There are two main strategies for system time distribution:
- Strategy without interrupts of the current executing

task;

- Strategy with priority interrupts of the active task.
The strategy with priority interrupts gives privileges of the

high priority tasks in processing time distribution. Because of
this it is a more suitable strategy for realize the real time
operating system.

It is possible several tasks to be with same priority. In this
case they are switching alternate. The switching will continue
while the change in the system occurs. The changes may be:

- An event, which is changing the state of the current
task and removing it from list of the ready tasks;

- An event, which is setting the task with higher priority
from the active task (fig. 7).

When the system quantum is time out, the dispatcher is
checking whether there is a task with higher priority and if
absence of such, the current task execution will continues in
the next system quantum.

Task
Priority

 3
= 30

Task
Priority

 1
= 26

Task
Priority 2

 2
= 6

System
quantum

k-1 k k+1k-2 k+2

Event

Fig. 7. Processing time distribution between tasks

The system quantum is creating on the base of interrupts

from the Timer A. During the interrupt service procedure the
content of the current performed task is stored. Afterwards the
processing unit registers are loaded with the contents of
system virtual processing unit and the current mode is
changed from USET to SYSTEM. The first task is loaded
from the ready tasks queue. The content of the system process
is stored and the registers of the physical processing unit are
loaded with the contents of the first task from the list of ready
tasks. After this the system mode is changed from SYSTEM
to USER by modification of ExecMode field in the system
descriptor.

E. Interaction between tasks

The interaction between the processes in the real-time

operating system consists of data exchange between them.
The data exchanged between the processes can be examined
as a message of a defined format. The same idea is grounded
on the base of the message box mechanism. The message
boxes are used as a buffering message as well as for including
the synchronizing methods between the processes: process
transmitter and process receiver.

The message box descriptor is shown in Fig. 8. The flag
FULL accepts FALSE if the message box does not contain
any massage, and TRUE if the message is received by it.
The BlockTask field contains the blocked task ID from the
message box. This can be the task receiver, which is
waiting for a message or the task transmitter, which is
waiting for the message transmits. The message box buffer

402

is pointed by the pointer MsgPtr. When the box is empty
(Full=FALSE), its contain is indefinite.

Fig.8 Message box descriptor

F. Registration of external events

One of the main functions of the multitask kernel is to

transform the external influences into internal events. This
transformation, which defines the area of the real-time
system application, is performed by the embedded events
mechanism (Fig.9). On the external event ei replays the
system event Eventi, which is serving by Taski. It is possible
that some events are served by one task, but each event can be
served by one task.

Dispatcher E

RunTask

e0

e1

en

INT

Selector 0

Selector 1

Selector n

Event 0

Event 1

Event n

Task p

Task q

Task t

Fig. 9. Model of the event mechanism

When the event ei occurs, the hardware interrupt

mechanism returns the control to events manipulator. The
Selector identifies ei and establishes a connection with the
system event Eventi. After this the system manipulator
generates a request to the dispatcher. The events dispatcher
distributes the processing unit time on the base of the strategy
with priority interrupts: the blocked task on Eventi is activated
if its priority is higher from the current performed task. In the
opposite case, the task is included in the ready task queue.

The realization of the events mechanism depends on the
architecture of MSP430 microcontrollers. To determinate the
external influence two ports are used: Port 1 and Port 2 of the
microcontroller. These ports have different interrupt vectors.
The connection between the influence and the internal event is
set by the system manipulator functions Selector0 – Selector.

IV. REAL TIME OPERATING SYSTEM MSPIX

MSPIX is a priority multitask operating system, which is
designed for use in embedded system built in on the base of
MSP430 microcontrollers. Its parameters include: the
necessary volume of data and software memory and some
basic time parameters. The first parameter group is necessary
for the microcontroller choice. The limitations here are a
result of data memory size. It varies from 256 to 10240 bytes.
It is recommended to use the microcontrollers with minimum
1024 bytes of data memory. The system expenses for a user’s
task are connected with creating its descriptor in the memory
and with organizing its stack area. The task descriptor consists
of 8 fields with a size of 16 bits (one word) and a field with
twenty words for task content. The additional system expenses
are created from the system descriptor (generally 34 words),
message box descriptors (6 words) and event descriptors (2
words). Another basic feature of the real-time operating
system is the time switching. These are quite important
parameters characterizing the system. The switching between
the tasks is done when the system process is activated. The
system is in SYSTEM mode and the mask-like interrupts are
not allowed. At this moment a risk of event service delaying
can occur. The time parameters are shown in Table 1.

Table 1
Expenses Cycles In seconds

Maximum switching
time between the tasks 496 66.10-6 sec

Minimal switching time
between the tasks 344 43.10-6sec

V. CONCLUSIONS

The developed real-time operating system possesses most
of the contemporary real-time operating system features.To
analysis the main system parameters, it is developed a system
on base of MSP430F149 microcontroller. In this system the
maximum switching time between the tasks is 66us, and the
system quantum is 66ms. The developed system is
characterized with low processing time expenses. The results
of the developed system are near to the contemporary real-
time operating systems.

V. REFERENCES

[1] Henzinger T.The Embedded Machine:Predictable,
Portable Real-Time Code, EECS, University of
California, Berkeley.

[2] Дилов К. Дипломна работа на тема: Операционна
система за реално време за фамилия
микроконтролери MSP430, София 2004.

[3] MSP430X1XX Family User's Guide - Texas Instruments.
[4] Single-chip Microcontroller real-time operating system –

Digital Cellular Magazine 2002.
[5] J.K Stankovic, J. K. Ramamritham. The design of the

spring kernel. Real-time systems symposium, San Jose,
1987.

