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Abstract - This paper presents a method for synthesis of
two kinds of inverse filters with Hausdorff-type transfer
characteristic. The filter frequency characteristics are
determined and a comparison with Chebyshev inverse
filters is given.
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. Introduction
In modern filter theory the synthesis is performed by
appropriate characteristic function approximation [2], [3].
Hausdorff filters are implemented by "shifted" Delta-function
approximation [1] with the same form line as of an ideal
characteristic function with Hausdorff polynomial, given on
Fig. 1 and Equation (1):
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In this equation & (Hausdorff dimension) is the best
approximation with algebraic polynomial of "shifted" Delta-
function in Hausdorff metrics [1], T, is Chebyshev

polynomial of first order and n degree; « is parameter,
a=2nxf is frequency and the product ce determines function
steepness in an interval approximating the transition between
filter pass-band (PB) and filter stop-band (SB). Given the
filter order n and pass-band ripple DA [dB], the Hausdorff
dimension & and the product ae could be found from the
following equations (2) and (3), [4]:
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Hausdorff filters transfer function takes the form:
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As ae values are in the interval (0,1) from the equation (4)
can be seen that Chebyshev polynomial argument is divided
by a positive number smaller than 1. That's why the Hausdorff
filter transmission function appears to be "scale-shrunk"
compared to Chebyshev ones with a coefficient of (1—ae/2).

Hausdorff and Chebyshev filters transmission functions are
shown on Fig. 2. Both functions contain identical variation in
pass-band and identical steepness out of it when the difference
for the normalized frequency (cut-off frequency in this case)
is equal to ae/2 [5].
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Il. Inverse Hausdorff Filters (IHF)
A. Inverse Hausdorff Filters from A-type
An inverse filter transmission function comes out through
low-frequency filter-prototype transmission function transfer
into high-frequency transmission function and the reciprocal
value of argument is taken o =1/ w:
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As can be seen from the last equation Chebyshev polynomial
argument is multiplied by the expression (1-oe/2). This

comes to transmission function "scale-stretching™ along the w
axis with a coefficient (I—ae/2). Inverse Hausdorff and
Chebyshev filters will have identical steepness and attenuation
in stop-band, as ordinary (non-inverse) Hausdorff filters when
filter order n and characteristics value k for limit frequency
®, , are equal (Fig. 3).
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The cut-off frequency shift @, is not acceptable in terms

of filter design. As for inverse Hausdorff filters this can be
overcome with the help of modern filter synthesis theory [2],
[3]. An IHF is to be designed with limit frequency equal to a
preliminary specified value of transfer function k, the pass
band frequencies proportional to the product ce , as shown on
Fig.4.
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Filter order n, cut-off frequency @, transfer function

attenuation for it DA in [dB], stop frequency @, and the

product o are to be known for transfer function parameters
specification. Transfer function limit frequency value is

specified like in (2):
k — }100.1DA _1 ) (6)

The product ae can be specified by calculating transfer
function value of inverse Chebyshev filter from the same
order in stop frequency:
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Then & of the low-pass filter-prototype can be calculated
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As it was mentioned in the beginning, the plain Hausdorff and
Chebyshev filters when pass-band ripple is equal, the
characteristics steepness is also equal, i.e. when the relation
o, /o, is equal they will have equal attenuation. Therefore,
the established value for will be equal to the value of
Hausdorff dimension of the low-pass Hausdorff filter-
prototype. When it is known, oe can be determined from the
equation (3).

The requirement that the cut-off frequency must remain
the same leads to a change in stop-band maximums, which
can be seen on Fig 4. The attenuation that IHF will have with
o,(-cel2)l o, asvalue of argument is calculated:
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From the established value IHF equivalent ripple & can be
determined:
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Then the attenuation that IHF will have for stop-band w, will
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be:

B. Inverse Hausdorff filters from B-type

From the point of view of the synthesis it would be
interesting to form an inverse filter transfer function taking in
equation (1) reciprocal value of the whole expression
containing the Chebyshev polynomial argument:
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In this case, in contrast to (5), the argument @ is divided
by (1—ae/2). This leads to "scale-compressing™ of transfer
function (Fig. 5) along the axis @ a coefficient of (1—ce/2).
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The transfer function we want to realize is shown on Fig. 6.
This type filter parameters can be defined as those for A-type.
The product ae is established from the equations (6), (7), (8)
and (3) and the expressions (9), (10) and (11) take the form:
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I11. Synthesis basics
The characteristics and transfer function are represented as
relation of three polynomials e(s), p(s) u q(s) of complex
frequency s=jo. The polynomial e(s) is Hurwitz strict
polynomial and its zeros ,; represent the filter own

frequencies and these of p(s) - the extreme frequencies @, ,
for which the transfer function has infinite attenuation.
Calculating two of polynomials usually solves the synthesis
task and the third is defined by Feldkeller equation:

e(sk(-s)=p(s)hp(-s)+alskl-s). (16)
The zeros of e(s) and p(s) can be found as follows:
For A-type:
W, = ! ; a7
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Elements value calculation is carried by a method described in

[17] via transformation of the variable s into a new variable z:
2
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Basing on this method two computer programs APPROX and
LC are given in [3] where the filter is calculated. On input
data load frequencies defined from the equations (18) and (20)
must be introduced.

Through the described synthesis method two low-pass
Hausdorff filters from third order (n=3) and cut-off frequency
f, =10kHz, stop frequency f, =15kHz, ae=0.1239,
attenuation 0.3dB for cut-off frequency, normalized input and
output resistance of 1Q were calculated. Schematic diagrams
7 and 8 of the filters are shown below:
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IV. Inverse Hausdorff filters frequency

characteristics
A. Magnitude (amplitude)-frequency characteristic
On Fig 9 are shown magnitudes responses of the two
filters compared to that of inverse Chebyshev filter with the
same input data.
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The IHF from A-type have Ies?s steepness in interval (w,,o,)
compared to the inverse Chebyshev. It is because their
extreme frequencies are (1—ae) ™ times higher than those of
Chebyshev's (18). They have greater attenuation in stop-band.
The extreme frequencies to IHF B-type are (1—cae) times less
than Chebyshev’s, which defines the higher characteristic
steepness in the interval (w,,, ) and less attenuation in stop-

band.
B. Phase-Frequency Characteristic

Equations (17) and (19) solution defines the polynomials
e(s). Represented as rational function after a substitution
s=jw, they expand into real &, and imaginary e,
polynomials. The same operation is applied to the
polynomials p(s), defined from (18) and (20). Phase-
frequency characteristic is:
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On Fig 10 phase-frequency characteristics of the two types
inverse Hausdorff filters are shown compared with that of
Chebyshev's with the same input data.
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Fig. 10
The A-type inverse Hausdorff filter has more linear

characteristics in pass-band compared to that of Chebyshev's
and the B type's characteristic is more non-linear.

C. Group time-delay (GTD)

It can be defined from the equation;

1) 1 )
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On Fig 11 group time delay of the two types inverse
Hausdorff filters are shown compared to that of inverse

Chebyshev filter with the same input data
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Fig. 11
The A-type inverse Hausdorff filter has more linear

characteristic in pass-band GTD compared to that of
Chebyshev's and the B-type is more non-linear.

IV Conclusion

We may say as a conclusion that the two types of inverse
filters are complimentary of one another. Compared to
Chebyshev's, the first type shortcomings are second type
advantages. This leads to greater opportunities in filter design.
The frequency characteristics specificity is defined from
Hausdorff dimension. This means that the two types
Hausdorff filters are unique and without analogous using
other type of approximation.
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