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Abstract - This paper presents a method for synthesis of 
two kinds of inverse filters with Hausdorff-type transfer 
characteristic. The filter frequency characteristics are 
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I. Introduction 
In modern filter theory the synthesis is performed by 

appropriate characteristic function approximation [2], [3]. 
Hausdorff filters are implemented by "shifted" Delta-function 
approximation [1] with the same form line as of an ideal 
characteristic function with Hausdorff polynomial, given on 
Fig. 1 and Equation (1): 
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In this equation ε  (Hausdorff dimension) is the best 
approximation with algebraic polynomial of "shifted" Delta-
function in Hausdorff metrics [1], nT  is Chebyshev 
polynomial of first order and n degree; α  is parameter, 
ω=2πf is frequency and the product αε  determines function 
steepness in an interval approximating the transition between 
filter pass-band (PB) and filter stop-band (SB). Given the 
filter order n and pass-band ripple DA [dB], the Hausdorff 
dimension ε  and the product αε  could be found from the 
following equations (2) and (3), [4]: 

 110 1.0 −= DAε ; (2) 
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Hausdorff filters transfer function takes the form:
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As αε  values are in the interval (0,1) from the equation (4) 
can be seen that Chebyshev polynomial argument is divided 
by a positive number smaller than 1. That's why the Hausdorff 
filter transmission function appears to be "scale-shrunk" 
compared to Chebyshev ones with a coefficient of ( )2/1 αε− . 
Hausdorff and Chebyshev filters transmission functions are 
shown on Fig. 2. Both functions contain identical variation in 
pass-band and identical steepness out of it when the difference 
for the normalized frequency (cut-off frequency in this case) 
is equal to 2/αε  [5]. 
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Fig. 2 

 
II. Inverse Hausdorff Filters (IHF) 

A. Inverse Hausdorff Filters from A-type 
An inverse filter transmission function comes out through 

low-frequency filter-prototype transmission function transfer 
into high-frequency transmission function and the reciprocal 
value of argument is taken ωω /1= : 
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As can be seen from the last equation Chebyshev polynomial 
argument is multiplied by the expression ( )2/1 αε− . This 
comes to transmission function "scale-stretching" along the ω 
axis with a coefficient ( )2/1 αε− . Inverse Hausdorff and 
Chebyshev filters will have identical steepness and attenuation 
in stop-band, as ordinary (non-inverse) Hausdorff filters when 
filter order n and characteristics value k for limit frequency 

cω , are equal (Fig. 3). 
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Fig. 3 

The cut-off frequency shift cω  is not acceptable in terms 
of filter design. As for inverse Hausdorff filters this can be 
overcome with the help of modern filter synthesis theory [2], 
[3]. An IHF is to be designed with limit frequency equal to a 
preliminary specified value of transfer function k, the pass 
band frequencies proportional to the product αε , as shown on 
Fig.4.
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Fig. 4 

Filter order n, cut-off frequency cω , transfer function 
attenuation for it DA in [dB], stop frequency sω  and the 
product αε  are to be known for transfer function parameters 
specification. Transfer function limit frequency value is 
specified like in (2): 

 110 1.0 −= DAk . (6) 
The product αε  can be specified by calculating transfer 
function value of inverse Chebyshev filter from the same 
order in stop frequency: 
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Then ε  of the low-pass filter-prototype can be calculated 

[6]: 
110
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As it was mentioned in the beginning, the plain Hausdorff and 
Chebyshev filters when pass-band ripple is equal, the 
characteristics steepness is also equal, i.e. when the relation 

cs ωω /  is equal they will have equal attenuation. Therefore, 
the established value for will be equal to the value of 
Hausdorff dimension of the low-pass Hausdorff filter-
prototype. When it is known, αε  can be determined from the 
equation (3). 

The requirement that the cut-off frequency must remain 
the same leads to a change in stop-band maximums, which 
can be seen on Fig 4. The attenuation that IHF will have with 
( ) cs ωαεω /2/1−  as value of argument is calculated: 
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From the established value IHF equivalent ripple 1ε  can be 
determined:  
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Then the attenuation that IHF will have for stop-band sω  will 
be: 
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B. Inverse Hausdorff filters from B-type 
From the point of view of the synthesis it would be 

interesting to form an inverse filter transfer function taking in 
equation (1) reciprocal value of the whole expression 
containing the Chebyshev polynomial argument: 
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In this case, in contrast to (5), the argument ω  is divided 
by ( )2/1 αε− . This leads to "scale-compressing" of transfer 
function (Fig. 5) along the axis ω  a coefficient of ( )2/1 αε− . 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

A(ω)

Hausdorff
Chebyshev

k 

ωωc ∞ 

αε/2

~αε/2  
Fig. 5 



 61

The transfer function we want to realize is shown on Fig. 6. 
This type filter parameters can be defined as those for A-type. 
The product αε  is established from the equations (6), (7), (8) 
and (3) and the expressions (9), (10) and (11) take the form: 
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Fig. 6 
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III. Synthesis basics 

The characteristics and transfer function are represented as 
relation of three polynomials ( )se , ( )sp  и ( )sq  of complex 
frequency ωjs = . The polynomial ( )se  is Hurwitz strict 
polynomial and its zeros iω  represent the filter own 
frequencies and these of ( )sp  - the extreme frequencies i∞ω , 
for which the transfer function has infinite attenuation. 
Calculating two of polynomials usually solves the synthesis 
task and the third is defined by Feldkeller equation:  

 ( ) ( ) ( ) ( ) ( ) ( )sqsqspspsese −+−=− . (16) 
The zeros of e(s) and p(s) can be found as follows: 

For A-type: 
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For B-type: 
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where: 
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Elements value calculation is carried by a method described in 
[17] via transformation of the variable s into a new variable z: 
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Basing on this method two computer programs APPROX and 
LC are given in [3] where the filter is calculated. On input 
data load frequencies defined from the equations (18) and (20) 
must be introduced. 
Through the described synthesis method two low-pass 
Hausdorff filters from third order (n=3) and cut-off frequency 

kHz10=cf , stop frequency kHz15=sf , 1239.0=αε , 
attenuation 0.3dB for cut-off frequency, normalized input and 
output resistance of 1Ω were calculated. Schematic diagrams 
7 and 8 of the filters are shown below: 

 
Fig. 7 

 
Fig. 8 

 
IV. Inverse Hausdorff filters frequency 

characteristics 
A. Magnitude (amplitude)-frequency characteristic 
On Fig 9 are shown magnitudes responses of the two 

filters compared to that of inverse Chebyshev filter with the 
same input data. 
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Fig. 9 

The IHF from A-type have less steepness in interval ( )sc ωω ,  
compared to the inverse Chebyshev. It is because their 
extreme frequencies are ( ) 11 −−αε  times higher than those of 
Chebyshev's (18). They have greater attenuation in stop-band. 
The extreme frequencies to IHF B-type are ( )αε−1  times less 
than Chebyshev’s, which defines the higher characteristic 
steepness in the interval ( )sc ωω ,  and less attenuation in stop-
band. 

B. Phase-Frequency Characteristic 

Equations (17) and (19) solution defines the polynomials 
( )se . Represented as rational function after a substitution 
ωjs = , they expand into real Rå  and imaginary Ie  

polynomials. The same operation is applied to the 
polynomials ( )sp , defined from (18) and (20). Phase-
frequency characteristic is: 
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On Fig 10 phase-frequency characteristics of the two types 
inverse Hausdorff filters are shown compared with that of 
Chebyshev's with the same input data. 

 
Fig. 10 

The A-type inverse Hausdorff filter has more linear 
characteristics in pass-band compared to that of Chebyshev's 
and the B type's characteristic is more non-linear. 

C. Group time-delay (GTD) 
It can be defined from the equation: 
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On Fig 11 group time delay of the two types inverse 
Hausdorff filters are shown compared to that of inverse 
Chebyshev filter with the same input data 

 
Fig. 11 

The A-type inverse Hausdorff filter has more linear 
characteristic in pass-band GTD compared to that of 
Chebyshev's and the B-type is more non-linear. 

 
IV Conclusion 

We may say as a conclusion that the two types of inverse 
filters are complimentary of one another. Compared to 
Chebyshev's, the first type shortcomings are second type 
advantages. This leads to greater opportunities in filter design. 
The frequency characteristics specificity is defined from 
Hausdorff dimension. This means that the two types 
Hausdorff filters are unique and without analogous using 
other type of approximation. 
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