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Abstract - This paper proposes a general method which 
transforms known one-layer neural network PSA algorithms, 
into PCA algorithms. The method uses two distinct time scales. A 
given PSA algorithm is responsible, on a faster time scale, for the 
“behaviour” of all output neurons. At this scale, a principal 
subspace is obtained. On a slower time scale, output neurons 
compete to fulfil their “own interests”. On this scale, basis 
vectors in the principal subspace are rotated toward the 
principal eigenvectors. 
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I. INTRODUCTION 

Neural networks provide a novel way for parallel on-line 
computations of the principal component analysis (PCA) or 
principal subspace analysis (PSA). Due to their parallelism 
and adaptivity to input data, such algorithms and their 
implementations in neural networks are potentially useful in 
feature extraction and data compression. It is well known that 
in the first step of any pattern recognition scheme, which is 
the representation of the objects from a usually large amount 
of raw data, some preprocessing and data compression is 
essential. In that case a minimal loss of information is a 
central objective. Many preprocessing, feature extraction and 
data compression techniques can be mathematically expressed 
as linear transformations. Since more economical 
representations than the original set of measurements are 
mostly desired, this transformation is a linear mapping to a 
lower-dimensional subspace. PCA is also used as a 
preprocessing step in independent component analysis (ICA). 

Within last years various PCA and PSA learning algorithms 
have been proposed and mathematically investigated [1-3, 5, 
6, 8-13,15-28]. Most of them are based on local Hebbian 
learning. Due to locality it has been argued that these 
algorithms are biologically plausible. PSA is essential for 
some problems such as subspace methods for pattern 
recognition. It seems that derivation of PCA algorithms is 
usually harder than that of PSA algorithms, since the number 
of known parallel PCA algorithms is much smaller. In this 
paper we propose a simple method for converting PSA 
algorithms to PCA algorithms. It is named the Time-Oriented 
Hierarchical Method (TOHM).  
 

1Marko Jankovic is with the Institute of Electrical Engineering 
“Nikola Tesla”, Koste Glavinica 8a, 11000 Belgrade, Serbia and 
Montenegro, E-mail: elmarkoni@ieent.org 

2Hidemitsu Ogawa is with Tokyo Institute of Technology, Tokyo, 
Japan, 152-8552, E-mail: ogawa@og.cs.titech.ac.jp 
 
 

The TOHM is introduced in Section II. Application of 
TOHM is presented in Section III. Section IV is devoted to 
mathematical analysis of the proposed method. Simulation 
results are presented in Section V. Section VI gives 
conclusions. 
 
 

II. TIME-ORIENTED HIERARCHICAL METHOD 
 

We shall introduce a general method for transformation of 
PSA algorithms to PCA algorithms. The main idea is that  
 

Each neuron tries to do what is the best for its family, and 
then to do what is the best for himself. 
 

We shall call this idea “the family principle”. In other words 
the algorithm consists of two parts: the first part is responsible 
for the family-desirable feature learning and the second part is 
responsible for the individual-neuron-desirable feature 
learning. The second part is taken with a weight coefficient α 
which is smaller than 1. This means that we will make some 
time-oriented hierarchy in realization of the family and 
individual parts of the learning rules.  

What was the motivation? In Fig. 1, a multivariate Gaussian 
probability density is shown. It is well known that principal 
axes of the hyper ellipsoid are parallel to the eigenvectors of 
the covariance matrix when the mean of input signals are zero. 
In the case when a PSA algorithm is used, weight vectors, 
which are shown by dotted lines in Fig.1, are rotated to 
principal axes. Now, a question is how to make an additional 
driving force for the rotation. Our proposal is to add one more 
term to the PSA algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Illustration of the multivariate Gaussian probability density 
 

In order to realize “the family principle”, we propose the 
following general method, which transforms a PSA algorithm, 
denoted by FLAPSA, to a PCA algorithm, denoted by LAPCA: 
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where α is a constant such that  |α|<1. ILA denotes an 
individual part. It is an algorithm for achieving maximization 
of E(yTy) under the constraints wk

Twk=1 for k=1,2,…,N. We 
can see, that if homogenous PSA algorithm is used then we 
will have fully homogenous PCA algorithm. 

Since |α| < 1, the family part of the learning rule is 
implemented faster than the individual part. Equation (1) is 
roughly illustrated in Fig. 2. 
 
 
 
 
 
 
 
 
 
Fig. 2 Block schema of the realization of the proposed method 
 
Due to symmetry of the proposed algorithm there is more than 
one solution (attraction point). It can cause the “conflict of 
interests” between individual neurons. From Fig. 1 we can see 
that one weight vector can move toward the positive direction 
of the principal axis 1, and at the same time second weight 
vector will have “intention” to move toward the negative 
direction of the principal axis 1.  And then, the algorithm can 
stop somewhere in the middle or oscillate between some 
points. So, sometime algorithm can be sensitive to α selection.  

Can we diminish that problem?  The answer is yes if we 
introduce some asymmetry in the algorithm. We give different 
neurons different possibilities to achieve the principal 
eigenvector. The proposed method is given by the following 
equation: 
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where D is a diagonal matrix with nonzero elements dn and 
such that |dn|<1. Introduction of asymmetry brings additional 
time hierarchical organization of the realization of individual 
parts of learning rule. Obviously if all dn are equal to α, we 
have the homogenous case. 

III. APPLICATION OF THE TOHM 

We shall show two typical applications of the TOHM. First 
one is to derive a new PCA algorithm from a PSA algorithm 

by using the TOHM. We shall use the Modulated Hebb Oja 
(MHO) algorithm as a PSA algorithm [13]. That is, applying 
Eq. (1) to method proposed in [13] yields 
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Some simulation results for the new PCA algorithm are 
presented in Section V. 

The second application of the TOHM is to give a new 
interpretation of existing PCA algorithms. As an example, we 
shall show that the well-known weighted learning rule for 
PCA [21] can be derived from a PSA algorithm named 
Subspace Learning Algorithm (SLA) using TOHM. The 
weighted learning rule is given by  
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This equation can be written as 
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If we assume that θk are nearly equal to one, having in mind 
Ref. [17] and the fact that the norm of the k-th weight vector 
is 1/θk

0.5 (see [21], [22]), this equation represents a special 
case of Eq. (2). 

IV. SIMPLIFIED MATHEMATICAL ANALYSIS OF 
THE PROPOSED PRINCIPLE 

Although it is generally assumed that |dn| < 1, we shall 
analyse only the case that |dn| is much less than 1. In this case, 
the “individual part” in Eq. (2) has almost no impact on the 
“family part” (idea used in multiloop control design [14]). 
Then the “family part” provides a principal subspace. This 
means that WTW=I and W spans a principal subspace. In this 
case, the “individual part” in Eq. (2) can be written as  
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Corresponding differential equation is [15, 20]  

 

( )( )DCWWWdiagCW
dt

dW T−= , (7) 

 
where diag(WTCW) is a diagonal matrix which consists of 
diagonal elements of  WTCW. If we write this equation for 
each column wk, we have 
 

( )kkkk
k wCwd

dt
dw λ−= , (8) 

 
where λk is the k-th element of diag(WTCW). We can easily 
conclude that the stationary points of these equations are 
eigenvectors of the matrix C. If the wk(i) of the corresponding 
discrete algorithm visits infinitely often a compact subset of 
the domain of attraction of the solution of Eq. (8), then the 
solution of Eq. (8) is also a solution for the corresponding 
discrete algorithm (2). 

V. SIMULATION RESULTS 

We shall consider small-scale numerical simulations whose 
results are given in Table I to Table IV. Two algorithms were 
examined. One is a PCA algorithm derived from the SLA by 
the TOHM, which is denoted by the TOHM SLA. The other is 
a PCA algorithm derived from the MHO algorithm by the 
TOHM, which is denoted by the TOHM MHO. The number 
of inputs was K = 5 and the number of output neurons was N 
= 3. Artificial zero-mean vectors with uncorrelated elements 
were generated by the following equations: 

rand(1,1). + .5- =x(5,1)
 .5);+,1)log(rand(1*1).-2*.5)<)((rand(1,1=x(4,1)

 13)/9);-(rem(i,27)=x(3,1)
 11)/9).^5;-(rem(i,23)=x(2,1)

sin(i/2);  = x(1,1)

 

In such a case, the three principal eigenvectors are c1 = 
(00100)T, c2 = (10000)T and c3 = (01000)T. Let d be the vector 
which consists of dk in Eq. (16). In Table I and Table II, a 
smaller d = (0.08, 0.06, 0.04)T is used.  In that case both 
algorithms require big number of iterations (70000) to 
converge to a solution. In Table III and IV a bigger d = (0.4, 
0.2, 0.1)T is adopted, and algorithms become faster. Results in 
the tables are achieved after 10000 iterations. The simulation 
results show that the TOHM is useful. 
 

TABLE  I 
 WEIGHT VECTORS OF THE TOHM SLA LEARNING  

ALGORITHM AFTER 70000 ITERATIONS; D=(0.08, 0.06, 0.04)T 

 
W 

0.0493 -0.9960 0.0932 
0.0195 -0.0964 -0.9953 
0.9907 0.0448 0.0062 
-0.0283 -0.0356 0.0071 
-0.1315 -0.0433 -0.0511 

 
TABLE  II  

WEIGHT VECTORS OF THE TOHM MHO LEARNING  
ALGORITHM AFTER 70000 ITERATIONS; D=(0.08, 0.06, 0.04)T 

 
W 

-0.0871 1.0001 0.1439 
-0.0289 0.0856 -0.9866 
0.9960 0.0942 -0.0427 
-0.0577 0.0244 -0.0164 
-0.0427 0.0069 0.0060 

 
TABLE  III 

 WEIGHT VECTORS OF THE TOHM SLA LEARNING  
ALGORITHM AFTER 10000 ITERATIONS; D=(0.4, 0.2, 0.1)T 

 
W 

-0.0449 0.9977 0.0159 
0.0212 0.0292 0.9907 
-0.9987 -0.0074 0.0078 
0.0535 -0.0084 -0.0189 
0.0077 -0.0716 -0.0465 

 
TABLE  IV  

WEIGHT VECTORS OF THE TOHM MHO LEARNING 
 ALGORITHM AFTER 10000 ITERATIONS; D=(0.4, 0.2, 0.1)T 

 
W 

-0.0488 0.9905 0.2027 
0.0295 -0.1062 0.9775 
1.0014 -0.0632 -0.0343 
0.0541 -0.0530 -0.0293 
0.0142 0.0407 0.0283 

VI. CONCLUSION 

In this paper, a general method (named time-oriented 
hierarchical method – TOHM) is proposed, which transforms 
PSA algorithms into PCA algorithms. Introduction of the two 
distinct time scales is the novelty of the proposed method. 
This indirectly means that possible biological implementation 
of the network requires two types of the neurotransmitters. On 
a faster time scale a PSA algorithm is responsible for the 
“behaviour” of the all output neurons. On a slower scale, 
output neurons compete to fulfil their “own interests”. On this 
scale, basis vectors in the principal subspace are rotated 
toward the principal eigenvectors. Some mathematical 
analysis and simulation results are presented. 
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