

65

Method for Transformation of Principal Subspace
Algorithms to Principal Components Algorithms

Marko Janković1 and Hidemitsu Ogawa2

Abstract - This paper proposes a general method which
transforms known one-layer neural network PSA algorithms,
into PCA algorithms. The method uses two distinct time scales. A
given PSA algorithm is responsible, on a faster time scale, for the
“behaviour” of all output neurons. At this scale, a principal
subspace is obtained. On a slower time scale, output neurons
compete to fulfil their “own interests”. On this scale, basis
vectors in the principal subspace are rotated toward the
principal eigenvectors.

Key words - Learning algorithm, neural networks, time

hierarchy, PSA, PCA.

I. INTRODUCTION

Neural networks provide a novel way for parallel on-line
computations of the principal component analysis (PCA) or
principal subspace analysis (PSA). Due to their parallelism
and adaptivity to input data, such algorithms and their
implementations in neural networks are potentially useful in
feature extraction and data compression. It is well known that
in the first step of any pattern recognition scheme, which is
the representation of the objects from a usually large amount
of raw data, some preprocessing and data compression is
essential. In that case a minimal loss of information is a
central objective. Many preprocessing, feature extraction and
data compression techniques can be mathematically expressed
as linear transformations. Since more economical
representations than the original set of measurements are
mostly desired, this transformation is a linear mapping to a
lower-dimensional subspace. PCA is also used as a
preprocessing step in independent component analysis (ICA).

Within last years various PCA and PSA learning algorithms
have been proposed and mathematically investigated [1-3, 5,
6, 8-13,15-28]. Most of them are based on local Hebbian
learning. Due to locality it has been argued that these
algorithms are biologically plausible. PSA is essential for
some problems such as subspace methods for pattern
recognition. It seems that derivation of PCA algorithms is
usually harder than that of PSA algorithms, since the number
of known parallel PCA algorithms is much smaller. In this
paper we propose a simple method for converting PSA
algorithms to PCA algorithms. It is named the Time-Oriented
Hierarchical Method (TOHM).

1Marko Jankovic is with the Institute of Electrical Engineering
“Nikola Tesla”, Koste Glavinica 8a, 11000 Belgrade, Serbia and
Montenegro, E-mail: elmarkoni@ieent.org

2Hidemitsu Ogawa is with Tokyo Institute of Technology, Tokyo,
Japan, 152-8552, E-mail: ogawa@og.cs.titech.ac.jp

The TOHM is introduced in Section II. Application of
TOHM is presented in Section III. Section IV is devoted to
mathematical analysis of the proposed method. Simulation
results are presented in Section V. Section VI gives
conclusions.

II. TIME-ORIENTED HIERARCHICAL METHOD

We shall introduce a general method for transformation of
PSA algorithms to PCA algorithms. The main idea is that

Each neuron tries to do what is the best for its family, and
then to do what is the best for himself.

We shall call this idea “the family principle”. In other words
the algorithm consists of two parts: the first part is responsible
for the family-desirable feature learning and the second part is
responsible for the individual-neuron-desirable feature
learning. The second part is taken with a weight coefficient α
which is smaller than 1. This means that we will make some
time-oriented hierarchy in realization of the family and
individual parts of the learning rules.

What was the motivation? In Fig. 1, a multivariate Gaussian
probability density is shown. It is well known that principal
axes of the hyper ellipsoid are parallel to the eigenvectors of
the covariance matrix when the mean of input signals are zero.
In the case when a PSA algorithm is used, weight vectors,
which are shown by dotted lines in Fig.1, are rotated to
principal axes. Now, a question is how to make an additional
driving force for the rotation. Our proposal is to add one more
term to the PSA algorithm.

Fig.1 Illustration of the multivariate Gaussian probability density

In order to realize “the family principle”, we propose the
following general method, which transforms a PSA algorithm,
denoted by FLAPSA, to a PCA algorithm, denoted by LAPCA:

Principal
axis 2

Principal
axis 1

 66

()

=
=+

=

Nk
wwyyEILA

FLALA

k
T
k

T

PSAPCA

2,1
,1maxα

, (1)

where α is a constant such that |α|<1. ILA denotes an
individual part. It is an algorithm for achieving maximization
of E(yTy) under the constraints wk

Twk=1 for k=1,2,…,N. We
can see, that if homogenous PSA algorithm is used then we
will have fully homogenous PCA algorithm.

Since |α| < 1, the family part of the learning rule is
implemented faster than the individual part. Equation (1) is
roughly illustrated in Fig. 2.

Fig. 2 Block schema of the realization of the proposed method

Due to symmetry of the proposed algorithm there is more than
one solution (attraction point). It can cause the “conflict of
interests” between individual neurons. From Fig. 1 we can see
that one weight vector can move toward the positive direction
of the principal axis 1, and at the same time second weight
vector will have “intention” to move toward the negative
direction of the principal axis 1. And then, the algorithm can
stop somewhere in the middle or oscillate between some
points. So, sometime algorithm can be sensitive to α selection.

Can we diminish that problem? The answer is yes if we
introduce some asymmetry in the algorithm. We give different
neurons different possibilities to achieve the principal
eigenvector. The proposed method is given by the following
equation:

()()

=
=+

=

Nk
wwyDyEILA

FLALA

k
T
k

T

PSAPCA

2,1
,1max

, (2)

where D is a diagonal matrix with nonzero elements dn and
such that |dn|<1. Introduction of asymmetry brings additional
time hierarchical organization of the realization of individual
parts of learning rule. Obviously if all dn are equal to α, we
have the homogenous case.

III. APPLICATION OF THE TOHM

We shall show two typical applications of the TOHM. First
one is to derive a new PCA algorithm from a PSA algorithm

by using the TOHM. We shall use the Modulated Hebb Oja
(MHO) algorithm as a PSA algorithm [13]. That is, applying
Eq. (1) to method proposed in [13] yields

()
()()

()().)(,)()()()()(

)(,)()()()(

)()()()()()()1(

22
1

22
1

iyiydiagiWiyixi

iyiydiagiWiyix

iyiyixixiiWiW

N
T

N
T

TT

−+

−⋅

−+=+

αγ

γ

 (3)

Some simulation results for the new PCA algorithm are
presented in Section V.

The second application of the TOHM is to give a new
interpretation of existing PCA algorithms. As an example, we
shall show that the well-known weighted learning rule for
PCA [21] can be derived from a PSA algorithm named
Subspace Learning Algorithm (SLA) using TOHM. The
weighted learning rule is given by

.)()()()()()(

)()1(

1

−+

=+

∑
=

N

m
mmkkk

kk

iwiyiyixiyi

iwiw

θγ
 (4)

This equation can be written as

.
1

)()()()1(

)()()()()()(

)()1(

1

−+

−+

=+

∑
=

k

k

k

k

N

m
mmkkk

kk

ixiyi

iwiyiyixiyi

iwiw

θ

γ
θ
θ

θγ (5)

If we assume that θk are nearly equal to one, having in mind
Ref. [17] and the fact that the norm of the k-th weight vector
is 1/θk

0.5 (see [21], [22]), this equation represents a special
case of Eq. (2).

IV. SIMPLIFIED MATHEMATICAL ANALYSIS OF
THE PROPOSED PRINCIPLE

Although it is generally assumed that |dn| < 1, we shall
analyse only the case that |dn| is much less than 1. In this case,
the “individual part” in Eq. (2) has almost no impact on the
“family part” (idea used in multiloop control design [14]).
Then the “family part” provides a principal subspace. This
means that WTW=I and W spans a principal subspace. In this
case, the “individual part” in Eq. (2) can be written as

()()

.subspace principal thespans and

such that is andmatrix diagonal a is where
,)(,,)()()()()(

)()1(
22

1

IWW

WD
DiyiydiagiWiyixi

iWiW

T

N
T

=

−+

=+

γ
 (6)

x y
FLA
(PSA)
(fast)

ILA

(slow)

 67

Corresponding differential equation is [15, 20]

()()DCWWWdiagCW
dt

dW T−= , (7)

where diag(WTCW) is a diagonal matrix which consists of
diagonal elements of WTCW. If we write this equation for
each column wk, we have

()kkkk
k wCwd

dt
dw λ−= , (8)

where λk is the k-th element of diag(WTCW). We can easily
conclude that the stationary points of these equations are
eigenvectors of the matrix C. If the wk(i) of the corresponding
discrete algorithm visits infinitely often a compact subset of
the domain of attraction of the solution of Eq. (8), then the
solution of Eq. (8) is also a solution for the corresponding
discrete algorithm (2).

V. SIMULATION RESULTS

We shall consider small-scale numerical simulations whose
results are given in Table I to Table IV. Two algorithms were
examined. One is a PCA algorithm derived from the SLA by
the TOHM, which is denoted by the TOHM SLA. The other is
a PCA algorithm derived from the MHO algorithm by the
TOHM, which is denoted by the TOHM MHO. The number
of inputs was K = 5 and the number of output neurons was N
= 3. Artificial zero-mean vectors with uncorrelated elements
were generated by the following equations:

rand(1,1). + .5- =x(5,1)
 .5);+,1)log(rand(1*1).-2*.5)<)((rand(1,1=x(4,1)

 13)/9);-(rem(i,27)=x(3,1)
 11)/9).^5;-(rem(i,23)=x(2,1)

sin(i/2); = x(1,1)

In such a case, the three principal eigenvectors are c1 =
(00100)T, c2 = (10000)T and c3 = (01000)T. Let d be the vector
which consists of dk in Eq. (16). In Table I and Table II, a
smaller d = (0.08, 0.06, 0.04)T is used. In that case both
algorithms require big number of iterations (70000) to
converge to a solution. In Table III and IV a bigger d = (0.4,
0.2, 0.1)T is adopted, and algorithms become faster. Results in
the tables are achieved after 10000 iterations. The simulation
results show that the TOHM is useful.

TABLE I
 WEIGHT VECTORS OF THE TOHM SLA LEARNING

ALGORITHM AFTER 70000 ITERATIONS; D=(0.08, 0.06, 0.04)T

W

0.0493 -0.9960 0.0932
0.0195 -0.0964 -0.9953
0.9907 0.0448 0.0062
-0.0283 -0.0356 0.0071
-0.1315 -0.0433 -0.0511

TABLE II

WEIGHT VECTORS OF THE TOHM MHO LEARNING
ALGORITHM AFTER 70000 ITERATIONS; D=(0.08, 0.06, 0.04)T

W

-0.0871 1.0001 0.1439
-0.0289 0.0856 -0.9866
0.9960 0.0942 -0.0427
-0.0577 0.0244 -0.0164
-0.0427 0.0069 0.0060

TABLE III

 WEIGHT VECTORS OF THE TOHM SLA LEARNING
ALGORITHM AFTER 10000 ITERATIONS; D=(0.4, 0.2, 0.1)T

W

-0.0449 0.9977 0.0159
0.0212 0.0292 0.9907
-0.9987 -0.0074 0.0078
0.0535 -0.0084 -0.0189
0.0077 -0.0716 -0.0465

TABLE IV

WEIGHT VECTORS OF THE TOHM MHO LEARNING
 ALGORITHM AFTER 10000 ITERATIONS; D=(0.4, 0.2, 0.1)T

W

-0.0488 0.9905 0.2027
0.0295 -0.1062 0.9775
1.0014 -0.0632 -0.0343
0.0541 -0.0530 -0.0293
0.0142 0.0407 0.0283

VI. CONCLUSION

In this paper, a general method (named time-oriented
hierarchical method – TOHM) is proposed, which transforms
PSA algorithms into PCA algorithms. Introduction of the two
distinct time scales is the novelty of the proposed method.
This indirectly means that possible biological implementation
of the network requires two types of the neurotransmitters. On
a faster time scale a PSA algorithm is responsible for the
“behaviour” of the all output neurons. On a slower scale,
output neurons compete to fulfil their “own interests”. On this
scale, basis vectors in the principal subspace are rotated
toward the principal eigenvectors. Some mathematical
analysis and simulation results are presented.

REFERENCES

[1] P. Baldi and K. Hornik, "Learning in linear neural networks: A
survey", IEEE Trans. Neural Networks, vol. 6, pp. 837-858,
July 1995.

[2] C. Chatterjee, Z. Kang and V.P. Roychowdhury, "Algorithms
for accelerated convergence of adaptive PCA", IEEE Trans. on
Neural Networks, vol. 11, no. 2, pp. 338-355, March 2000.

[3] T. Chen, Y. Hua and W. Yan, " Global convergence of Oja's
subspace algorithm for principal component extraction", IEEE

 68

Trans. on Neural Networks, vol. 9, no. 1, pp. 58-67, January
1998.

[4] G. Deco and D. Obradovic, "An information-theoretic approach
to neural computing", Springer-Verlag New York Inc., 1996.

[5] K.I. Diamantaras , "Robust principal component extracting
neural networks", ICNN'96, USA, pp. 74-77, 1996.

[6] S.C. Douglas, S.Y. Kung and S. Amari, "A self-stabilized minor
subspace rule", IEEE Signal Processing Letters, vol. 5, no. 12,
pp. 328-330, 1998.

[7] J. Dowling, "The Retina: an approachable part of the brain",
The Belknap Press of Harvard University Press, 1987.

[8] S. Fiori, "A theory for learning by weight flow on Stiefel-
Grassman Manifold, Neural Computation, Vol. 13, No. 7, pp.
1625-1647, July 2001.

[9] C. Fyfe and R.J. Baddeley, "Finding compact and sparse
distributed representations of visual images", Network:
Computation in Neural Systems 6(3), pp. 334-344, 1995.

[10] C. Fyfe and R.J. Baddeley, "Nonlinear data structure extraction
using simple Hebbain networks", Biological Cybernetics 72(6),
533-541, 1995.

[11] G. F. Harpur "Low entropy coding with unsupervised neural
networks", Ph.D. thesis, Cambridge University, UK, 1997.

[12] M. Jankovic, "A new simple ∞OH neuron model as a
biologically plausible principal component analyzer", IEEE
Trans. on Neural Networks, vol. 14, pp. 853-859, 2003.

[13] M. Jankovic and H. Ogawa "A new modulated Hebb learning
rule – Biologically plausible method for local computation of
principal subspace", Int. J. Neural Systems, Vol.3, no.4, 2003.

[14] J.G. Kassakian, M.F. Schlecht, G.C. Verghese “Principles of
Power Electronics”, Addison-Wesley Publishing Company,
1991.

[15] L. Ljung, "Analysis of recursive stochastic algorithms", IEEE
Trans. Automat. Contr., vol. 22, pp. 551-575, 1977.

[16] H. Ogawa, "Karhunen-Loéve subspace", International
Conference on Pattern Recognition, Hague, The Netherlands,
pp. 75-78, 1992.

[17] E. Oja, "A Simplified neuron model as a principal component
analyzer", J. Math. Biol., vol. 15, pp. 267-273, 1982.

[18] E. Oja, "Subspace Method of Pattern Recognition", Research
Studies Press and J. Wiley, Letchworth, 1983.

[19] E. Oja, "Neural networks, principal components, and
subspaces", Int. J. Neural Systems, 1, pp. 61-68, 1989.

[20] E. Oja and J. Karhunen "On stochastic approximation of the
eigenvectors and eigenvalues of the expectation of a random
matrix", J. Math. Anal., Appl., 106, pp. 69-84, 1985.

[21] E. Oja, H. Ogawa and J. Wangviwattana, "Principal component
analysis by homogeneous neural networks, Part I: The weighted
subspace criterion", IEICE Trans. Inf.&Syst., E75-D, 3, pp.
366-375, 1992.

[22] E. Oja, H. Ogawa and J. Wangviwattana, "Principal component
analysis by homogeneous neural networks, Part II: Analysis and
extensions of the learning algorithm", IEICE Trans. Inf.&Syst.,
E75-D, 3, pp. 376-382, 1992.

[23] S. Ouyang, Z. Bao and G. Liao, "Robust recursive least squares
learning algorithm for principal component analysis", IEEE
Trans. on Neural Networks, vol. 11, no. 1, pp. 215-221, January
2000.

[24] M. Plumbley, "On information theory and unsupervised neural
networks", Technical Report CUED/F-INFENG/TR. 78,
Cambridge University, UK, 1991.

[25] A. Weingessel and K. Hornik, "Local PCA algorithms", IEEE
Transactions on Neural Networks, vol. 11, no. 6, pp. 1242-1250,
November 2000.

[26] L. Xu, "Least mean square error reconstruction principle for
self-organizing neural nets", Neural Networks, vol. 6, pp. 627-
648, 1993.

[27] W. Yan, U. Helmke and J.B. Moore, "Global analysis of Oja's
flow for neural networks", IEEE Trans. on Neural Networks,
vol. 5, no. 5, pp. 674-683, 1994.

[28] Q. Zhang and Y. Leung, “A class of learning algorithms for
principal component analysis and minor component analysis”,
IEEE Trans. On Neural Networks, vol. 11, no. 2, pp. 529-533,
March 2000.

