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Abstract - In this paper a new strategy to obtain very low 

sensitivity narrow-band orthogonal hypercomplex coefficients first-
order IIR digital filter sections with canonic number of elements is 
developed. It is shown that the new filters behave much better in a 
limited word-length environment in comparison with other known 
structures of this type. 
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I. INTRODUCTION 
As a rule hypercomplex numbers are defined as an expansion of 

complex numbers [1]. Hamilton’s quaternion belongs to the group 
of hypercomplex numbers and has its main application in the field 
of image processing and computer graphics as a coordinate 
transform of 3-D images. They have been also employed by the 
aerospace engineering, where their convenient representation of 
rotation has proved useful in such matters as stabilization and 
altitude control. Shutte and Wenzel proved that Hamilton’s 
quaternions and biquaternions are not well suited for the purpose 
of digital signal processing (DSP) and in Ref. [2] the modified 
version as “reduced biquaternions (RB)” is offered. Some authors 
call RB “bicomplex numbers”. Several research studies 
concerning applications of bicomplex numbers to DSP have been 
reported. Computational efficiency and stability criterion of 
digital filters with bicomplex coefficients are investigated in Ref. 
[9], [8]. Colour image filters based on hypercomplex convolution 
are defined and utilized for autocorrelation and cross-correlation 
of color image processing in Ref. [10]. Hypercomplex filters also 
make use of image recognition, smoothing the colour image 
components, design of two-dimensional transfer functions with 
applications in image processing of both grey scale and colour 
images.  

The filters with RB coefficients can reduce the order of the 
filters to 1/4 of the one with real coefficients, and to 1/2 of one 
with complex coefficients, which is one of the most significant 
advantages of using hypercomplex numbers. Reduction of the 
number of multipliers and additions by efficient algorithms is 
another advantage. 

In many applications high accuracy filter realizations with 
heavily quantized coefficients are required and they are achieved 
by structures with lower sensitivity. In this paper some new first-
order narrow-band hypercomplex digital filter 
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sections with very low coefficients sensitivity are developed and 
investigated. 
 

II. PROPERTIES OF HYPERCOMPLEX NUMBERS 

A quaternion may be represented in hypercomplex form 
as follows: 

 dkcjbiaq +++= , (1) 

where a, b, c and d are real numbers, while i, j, and k are 
orthogonal complex operators which obey the following 
rules: 
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Regarding the arithmetic lows of a quaternion, addition 
of two quaternions is commutative and associative, and 
multiplication is associative but not commutative, which 
make them not applicable to DSP systems. To avoid this 
problem reduced biquaternion (RB) has been proposed, 
which is derived as follows: a and b in Eq. (1) are 
expanded to complex numbers and c and d are set to zero. 
This modification is equivalent to the expansion of each 
element of a complex number to a complex number, i.e. a 
quaternion is a complex number with complex real and 
imaginary parts. On account of that RB is also called 
bicomplex number: 
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where 1A , 2A , 3A  and 4A are real numbers, j is the 
imaginary unit with 12 −=j  and i is the vector unit with 

12 −=i . The first two terms SA  are called “scalar part” 
and the last two VA  - “vector part”. The properties of the 
imaginary units for RB are as follows: 
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Two types conjugate of A can be defined – the vector 
conjugate: 
 VS iAAA −=+  (5) 

and the complex conjugate: 

 )()( 4321
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Applying Euler’s formula for the complex exponential 
generalized to hypercomplex form any quaternion q may 
be represented in polar form as: 

 Φµ= eqq . (7) 
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µ  and Φ are referred as the eigenaxis and eigenangle of q, 
respectively. Φ is analogous to the argument of a complex 
number, but is unique only in the range ],0[ π , because the value 
greater than π can be reduced to this range by reversing of 
eigenaxis. µ  is a unit (pure) quaternion and identifies the 
direction in three-space of the hypercomplex number’s vector 
part. The requirement for µ  is 1=µ . 

Hereafter in this publication each coefficient and internal signal 
of hypercomplex digital filters will be encoded as a bicomplex 
number. 
III. HYPERCOMPLEX SECTIONS DERIVATION PROCEDURE 

OUTLINE 
If the variable z in a N-order real coefficients digital transfer 

function )(zH R is substituted by 

 )sin(cos θ−θ== θ− jzzez j , (8) 

the complex coefficients transfer function )()( θ−= j
C eHzH  will 

be obtained. )(zH C  may be easily presented by two 2N-order real 
coefficients transfer functions: 

 )()()ˆ( 21 zjHzHzH RRC += , (9) 

where “R” denotes real, “C” – complex and “ ẑ ” – complex 
variable. 

If )(zH R  is a low-pass (LP) type, )(1 zH R  and )(2 zH R  will be 
of band-pass (BP) type only, while high-pass (HP) )(zH R will 
produce band-stop (BS) type transfer functions as well. 2π=θ  
substituted in Eq. (8) brings to 

 jzz −=  (10) 

and respectively )()( jzHzH C −=  will be complex transfer 
function called “orthogonal”. 

In this work the idea proposed by Okabayashi and Takahashi 
[7] is used in order to derive a first-order hypercomplex 
(bicomplex) orthogonal transfer function )(zH HC  presented by 
fourth-order real coefficients transfer functions )(1 zH , )(2 zH , 

)(3 zH  and )(4 zH : 
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Scalar part )ˆ(1 zH C  and vector part )ˆ(2 zH C  have complex 
coefficients and “HC” marks hypercomplex. The coefficients of 

)(zH HC  are bicomplex numbers represented by Eq. (3). 

If “j” is replaced by “i” in Eq. (9), bicomplex coefficients 
transfer function will be retrieved: 

 )()()( 21 ziHzHzH RRHC += , (12) 

but the coefficients of )(1 zH R  and )(2 zH R  will be still real 
because )(zH HC  has coefficients whose scalar and vector 
components are with zero imaginary parts: 

 RAAiAAjAijAA ∈+=+++= 313131 ,)0()0( . (13) 

This corresponds to the orthogonal transformation 
izz −=  applied on real transfer function )(zH R  and 

leads to the orthogonal bicomplex function Eq. (12). 
Then, the complex frequency transformation according 

to j imaginary unit 

 θ−= jezz ˆ  (14) 

is applied on )(1 zH R  and )(2 zH R  in order to get: 

 )ˆ()ˆ()ˆ( 21 ziHzHzH CCHC += . (15) 

)ˆ(1 zH C  and )ˆ(2 zH C  have complex coefficients 
because now the imaginary parts of scalar and vector 
components are not zero: 

 RAAiAAjjAijAA ∈+=+++= 424242 ,)()0()0( . (16) 

Orthogonal form of the frequency transformation Eq. 
(14) 

 2ˆ
π

−
=

j
ezz , (17) 

applied on )(1 zH R  and )(2 zH R , will make possible the 
presentation of )ˆ(1 zH C  and )ˆ(2 zH C  in the terms of real 
transfer functions: 
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Thus the representation of a bicomplex orthogonal 
transfer function by four real transfer functions Eq. (11) is 
achieved.  
IV. FIRST-ORDER ORTHOGONAL HYPERCOMPLEX 

FILTER SECTIONS DERIVATION 
After intensive search among the most often used first-

order LP filter sections it was found that MHNS-section 
(Fig.1a) is rather appropriate prototype having canonic 
number of elements. Its transfer function is: 
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In [3] a method of circuit transformation is proposed 
permitting also to obtain orthogonal complex filters with 
canonic number of elements. Applying this method on the 
section in Fig.1a, the complex orthogonal structure from 
Fig.1b is obtained [5]. Having two inputs and two outputs 
as well, this section is able to realize four real coefficients 
transfer functions at its different outputs which are equal 
in couples as follows:  
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They are obtained after orthogonal transformation Eq. (10) is 
applied on Eq. (19) and all four are of BP type. They can be 
considered as real and imaginary parts respectively of the 
complex transfer function: 

 )()()( 21 zjHzHzH MHNS
R

MHNS
R

MHNS
C += . (22) 
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Fig.1. (a) First-order LP MHNS-prototype real sections;  

(b) MHNS-based orthogonal BP complex section 

Similar transformation, producing orthogonal bicomplex filter 
structures with canonic number of elements, could easily be 
developed. Realization by real elements (multipliers, delays and 
additions) is expected to be rather complicated circuit having four 
inputs and the same number of outputs. Therefore sixteen fourth-
order transfer functions will be carried out four by four equal with 
±  sign. 

According to the above presented method we apply orthogonal 
frequency transformation Eq. (17) on )(1 zH MHNS

R  and )(2 zH MHNS
R . 

As a result the following orthogonal fourth-order real coefficients 
transfer functions are obtained: 
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They form the bicomplex transfer function )(zH MHNS
HC . 

It was shown in [5] that in the case of narrow-band LP filter 
(pole near z=1) the MHNS-structure (Fig. 1a) has very high 
coefficients sensitivity. Using Nishihara’s method [4] of 
sensitivity minimization through coefficient conversion, the 
section shown in Fig.2a and named LS11 is derived. Its transfer 
function is:  
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Following the procedure applied on the MHNS-section, 
we derive the complex structure in Fig.2b with real 
coefficients transfer functions: 
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being parts of the orthogonal complex transfer function.  
The orthogonal bicomplex transfer function’s real parts 

are 
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Fig.2. (a) First-order LP LS11-prototype real sections;  

(b) LS11-based orthogonal BP complex section 

V. SENSITIVITY INVESTIGATIONS 
In this section the coefficients sensitivity of all three 

type (real, complex and bicomplex) filter sections will be 
investigated. The case of narrow-band orthogonal filter 
which is the most likely in practice is achieved for α=0.99 
(β=0.01). Canonic sign-digit (SD) code representation 
and fixed point arithmetic were used and the word-length 
was changed from infinite (ideal case) to 2 bits only. 

Under this conditions the real prototype-sections 
(Fig.1a and 2a) have been investigated. We have shown 
[5], [6] that coefficients sensitivity of LS11 LP first-order 
filter section is about hundred times lower that this of 
MHNS-section. It was shown also that the low-sensitivity 
properties of the LP-prototype circuits are directly 
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inherited in the complex coefficients orthogonal structures.  
In order to verify the reported results a number of computer 

simulation were conducted with respect to the bicomplex filter 
sections, derived in this publication. All eight transfer functions 
(23)-(26) for MHNS-based and (30)-(33) for LS11-based section 
were simulated for the same pole disposition near the unit circle. 
Poles 99,02,1 ±=p  and 99,04,3 jp ±= are achieved for 

99,0=α (MHNS-based) and 01,0=β  (LS11-based) structures. In 
Fig.3a and 3b some of the results concerning |H1| and |H3| of the 
MHNS- and the LS11-based structures are shown for different 
coefficient word-lengths. It is seen that the LS11-structure has a 
magnitude response almost coinciding with the ideal one even 
when the word-length is reduced to 2 bits only. The MHNS-based 
structure response (Fig. 3b) is considerably changed when the 
word-length is only limited to 3 bits. The similar results were 
obtained also for |H2| and |H4|. 

 
(a) 

 
(b) 

Fig. 3. Magnitude responses of the first-order bicomplex orthogonal 
sections for different word-lengths: (a) LS11-based for β=0.01; (b) 

MHNS-based for α=0.99 
 

VI. CONCLUSIONS 
A method for design of hypercomplex (bicomplex) coefficients 

first-order orthogonal filter sections was proposed in this 
publication. Second-order BP real coefficients transfer functions, 
composing a first-order complex function, were transformed into 
fourth-order real coefficients transfer functions after orthogonal 
frequency transformation. The first-order bicomplex transfer 
function can be presented by them which reduce four times the 
order in comparison with the real one.  

As narrow-band orthogonal filters are most often used, the 
developed transfer functions were investigated on these terms for 
different word-length of the coefficients.  

It was experimentally demonstrated that the magnitude 
response of the LS11 low sensitivity hypercomplex section does 
not change considerably even when two bits of SD-code is used, 
while the magnitude response of MHNS-structure is completely 

destroyed when the word-length is reduced to three bits. 
These properties, including sensitivity of the LP-prototype 
structures will be inherited by the new bicomplex 
structures. Many new sections can be derived and 
investigated following the proposed approach.  

The presented method for design of hypercomplex 
sections is also appropriate for second-order filter 
section’s derivation which will permit cascade filter 
realizations. 

The new hypercomplex structures are suitable for 
realization of high quality narrow-band orthogonal filters. 
Additionally, the possibility for  simplification of the 
circuits and further parallelism will make them very 
attractive for telecommunications and other DSP 
applications and will ensure a considerable reduction of 
the complexity and the cost of the equipment.  
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