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Realization of Variable IIR Digital Filters as a 
Cascade of Third or Higher Order Identical Sub-filters 

Georgi Stoyanov1, Ivan Uzunov2 and Masayuki Kawamata3  
 

 

Abstract – A new approach to design high tuning accuracy 
variable IIR filters as a cascade of N identical filters of order 
higher than second is proposed in this paper. The identical sub-
filters are realized as parallel allpass structures and their 
sensitivities are minimized to obtain higher accuracy and wider 
range of tuning compared to other known variable filters. All 
theoretical results derived are verified experimentally. 
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Sensitivity, Tuning accuracy, Cascade realization.  

I.   INTRODUCTION 

Variable IIR filters are usually designed by employing the 
spectral (allpass) transformations of Constantinides (TC) [1], 
[2]. But when the prototypes are IIR filters, delay-free loops 
appear after the TC. Due to the attempts to eliminate these de-
lay-free loops, no precise, without limitations, real-time tuning 
of IIR filters is known until now – all methods are approxi-
mate and valid only in a narrow range of values of the tuned 
parameter and over some limited frequency range. Most of the 
known methods are based on truncated Taylor series expan-
sions, applied on real or complex coefficient parallel-allpass- 
structure [3] (called MNR-method after the names of the 
authors Mitra, Neuvo and Roivainen) or on cascade [4] and 
wave [5] realizations. The MNR-method is considered as the 
best known, but we have shown in Ref. [6] that the magnitude 
characteristics are degrading even when the LP/HP (lowpass/ 
highpass) filter cutoff frequency or the bandpass and bandstop 
(BP/BS) bandwidth (BW) are tuned over a very limited fre-
quency range. We have increased considerably the range and 
the accuracy of tuning by introducing a sensitivity minimiza-
tion as an additional design step [6]. We have developed also 
a new approach [7], [8], based on a cascaded connection of 
several identical sub-filters. It permits an easy tuning of the 
cutoff frequency of the LP filter without having to use TC and 
truncated Taylor series expansions when using sub-filters of 
first or second order. We have developed and investigated 
[8],[9] such tunable sub-filter structures (of first and second 
order) with a very high tuning accuracy for narrow-band 
realizations. 

In this work we propose to realize the sub-filters of higher 
than second order as parallel allpass structures and investigate 
the applicability and the merits of such an approach. 

II.  APPROXIMATION USING A PRODUCT OF 
SEVERAL EQUAL TRANSFER FUNCTIONS 

Our new method of design and realization of variable 
digital filters (VDF) is based on the usage of several cascaded 
identical filter blocks, each of them providing a very simple 
tuning of a given frequency parameter by varying a single 
multiplier coefficient. We are concerned with development of 
approximation procedures meeting only lowpass filter 
specifications. Variable BP/BS filters are obtained then by 
applying the constrained TC [1][2] on the variable LP filter. 
This transformation provides also an independent tuning of 
the central frequency, while the tuning of the cutoff frequency 
of the prototype LP filter is varying the BW of these BP/BS 
filters.  

The magnitude specifications of the desired LP variable 
filter are: pass-band (PB) from 0 to ωp (for digital filters) or 
Ωp (for analog), stop-band (SB) from ωs or Ωs to infinity, 
maximum variation of the PB attenuation Ap, dB and 
minimum SB attenuation As, dB. And we have to find a total 
transfer function (TF) H(z) (digital) or T(s) (analog) represen-
ted as a product of N equal individual TFs Hi(z) or Ti(s), each 
of them of order n: 
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These TFs might be of Butterworth, Chebyshev or elliptic 
type and in the process of design we have to determine the 
minimal number N of the individual TFs Hi(z) or Ti(s), 
necessary to meet the specifications with given (selected) type 
(maximally flat, equiripple or other) and order n. A step-by-
step design procedure for this is given in [7][8], it is 
performed in the analog domain and is using the popular in 
the classical filter theory Characteristic function k(Ω). 

An approximation using N equal terms is far from optimal 
and there are many limitations that have to be clearly defined. 
These limitations depend on the type of the individual TF and 
on the selected approximation parameters. It might be even 
impossible to meet some difficult filter specifications doesn't 
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matter how high the number N is taken. These limitations are 
investigated in details in [7][8]. Here we need a more general 
evaluations taking into account the order n of the individual 
TFs and some simple parameter describing how difficult the 
specifications are. We choose to use the "rectangularity 
coefficient" r (calculated in s- or in z-domain) as such para-
meter: 
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where τ is the sampling interval and r is taking values within 
the limits ∞<≤ r1 with r=1 for an ideal LP filter. 

If 
maxsA is the highest value that As can achieve at its points 

of minimum (in the stop-band) for a given approximation and 
values of n while ∞→N , we can derive very handy formu-
lae connecting only Ap, r and 

maxsA  and permitting the most 

general possible way of comparing different approximations. 
For Butterworth-type of individual TF we get (starting from 

the results in [7][8]) 
n

ps rAA 2
 max

= ,                              (5) 

which is used to calculate the curves shown in Fig. 1. 
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Fig. 1   Upper limits of the SB attenuation for different order n of 

the individual Butterworth type transfer functions  

It is clear from Fig. 1 that the ratio ps AA /
max

 cannot 

exceed the value of 100 even for very easy filter specifications 
(r=3, for example) if we use an unlimited number of 
Butterworth-type second-order sections as individual sub-
filters. 

If the individual TFs are of Chebyshev type, we obtain the 
following very general expression 

( )rnAA ps Archch2
 max

= .                      (6) 

A family of curves, obtained by using Eq. (6), is shown in 
Fig. 2. It is seen once again that in order to obtain a filter with 
quite a high selectivity (r<2), it will be necessary to use 
individual sub-filters of order higher than second even when 
these sub-filters are with Chebyshev type of TF. These filters 
are, on the other hand, much more capable, compared to the 

filters with Butterworth individual TF (which is very easy to 
anticipate). 
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Fig. 2   Upper limits of the SB attenuation for different order n of 

the individual Chebyshev type transfer functions  

It is impossible to derive a single compact formula for the 
case of elliptic type of individual TFs. In [7][8] we have 
derived very general expressions (different for n even and n - 
odd), which are used to obtain the following more concrete 
formulae: 
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Fig. 3   Upper limits of the SB attenuation for different order n of 
the individual elliptic type transfer functions  
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where sn is the Jacobi's "sinus elliptic" function and K(1/r) – 
the function of Jacobi, calculated as a complete elliptic 
integral of first kind (see [8] for details). 
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It is seen from Fig. 3 that almost any kind of difficult filter 
specifications will be met if elliptic transfer functions with 
order higher than second are used to realize the individual 
sub-filters. 

In Fig. 4 the upper limits of the stop-band attenuation, 
achievable with identical first- (IFOS) and second-order 
sections (ISOS), are given in order to have a base for 
comparisons. These limits are, in fact, much lower because 
instead of ∞→N , we are using only several IFOS or ISOS. 
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Fig. 4   Upper limits of the SB attenuation with IFOS or ISOS 

III.   REALIZATION OF THE HIGHER 
ORDER SUB-FILTERS 

We have developed and investigated in [8],[9] excellent 
variable first and second order filter sections for IFOS and 
ISOS with truly independent high accuracy tuning without 
using any truncated Taylor series expansions. It appeared, 
however, to be impossible to synthesize such structures with 
higher than second order. No such structures have been found 
also in the literature. In order to solve the problem, we have to 
accept the MNR approach (to use truncated Taylor series 
expansions) [3] but only for the realization of the sub-filters. 
It will provide an easy tuning of the cutoff frequency of the 
LP individual filters by varying a single multiplier coefficient. 
But as our structure is a cascade of several low-order order 
sections (even though obtained as parallel-allpass-structures) , 
it will have much lower sensitivity in the stop-band, compared 
to that of the totally parallel allpass structure, which is 
behaving really badly, as shown in [6]. Next, we propose to 
use our approach advanced in [6], namely to introduce an 
additional step in the design of the sub-filers, consisting of a 
sensitivity minimization (within the frequency range of 
interest) of the first- and second-order allpass sections used to 
realize these sub-filters. There is another problem with the 
parallel-allpass-structure – it cannot realize even-order LP 
TFs with real coefficients. We could still use it to realize our 
even-order sub-filters with complex coefficients, but they will 
be quite impractical (complex structures with low tuning accu-
racy). Thus we shall concentrate mainly on the realization of 
third- and fifth-order sub-filters, putting, in fact, out of consi-
deration only sub-filters of fourth-order (it is also impractical 
to use sub-filters of order higher than fifth, because we lose 
then all the merits of the cascade realization). 

Once it is decided, the design problem is reduced to 
development of convenient first- and second-order allpass 
sections with low sensitivities for the frequency range over 
which the filter will be tuned. We have shown in [6] that for 
the most common case – variable narrow-band LP filter 
(having all his TF poles near z=1) – our very low sensitivity 
allpass sections, shown in Fig. 5b and Fig.6b and named 
respectively ST and LS, are by far the best known.  
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Fig. 5. First-order all-pass sections: (a) MH section, (b) ST section 
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Fig. 6. Second-order all-pass sections: (a) MH2B, (b) LS 

They realize the following TFs 
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In Figs. 5a and 6a we have shown the allpass sections most 
often mentioned in the literature [3] – these of Mitra and 
Hirano, called respectively MH and MH2B. 

The design of third and fifth-order sub-filters as parallel-
allpass-structures (Fig. 7a) might be very simple and straight-
forward. Once )(zH i (2) is determined, its poles p0 and 

1
12,1

θ= jerp (for n=3) and 31
34,312,10 ,, θθ == jj erperpp  

(for n=5) are readily known. Then, for n=3, A(z) (Fig. 7a) will 
be a second-order allpass TF with poles p1,2, while B(z) will be 
of first-order with a real pole p0. The denominator polynomials 
of A(z) and B(z) are thus easily found and the corresponding 
nominators are their mirror image polynomials.  
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(a)                                                  (b) 

Fig. 7. Parallel-allpass-structure-based realization (a) and variable 
coefficient realization (b) 
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For n=5 A(z) will be a third-order allpass TF with poles p0 
and p3,4, while B(z) will be of second-order with poles p1,2 

(supposing 13 θ>θ ).  
For n=3 and usage of the ST and LS sections it produces: 

001 1 p−=α , .1),cos21(5.0 2
12

2
1111 rcrrc −=−θ−=   (12) 

Each multiplier then is made tunable as shown in Fig. 7b by 
adding a parallel branch αKi, where α is the tuning factor and 
Ki is calculated as  

;)2( 0101 −αα=αK                            (13) 
Kc1 = c1(2c1 + c2 - 4);    Kc2 = c2(2c1 + c2 - 2).        (14) 

Similar formulae are easily derived for the design of ST and 
LS for n=5. 

IV.   EXPERIMENTS 

 
Fig. 8. Tuning of a Butterworth variable filter realized as a cascade 

of three 3rd order sub-filters (a) and as a MNR-filter (b) 

In order to verify the proposed approach and the derived 
expressions, we have designed and simulated many variable 
filters based on cascades of identical third or fifth order sub-
filters. In Fig. 8a, b the results are shown for filter meeting the 
following specifications: ωp=0.01 (tunable from 0.005 to 
0.015), ωs=0.03, Ap=2 dB and As=55 dB and using a Butter-
worth approximation. Our method is producing a 9th order TF, 

realized as a cascade of 3 sub-filters of 3rd order while the 
MNR-filter is of 7th order and is realized with MH and MH2B 
sections. It is seen in Fig. 8 that our filter is easily tuned even 
over wider frequency range while the SB magnitude of the 
MNR-filter is destroyed and gone out of the specifications and 
some transmission zeros are appearing even when 1.0<α . 

V.    CONCLUSIONS 

A new approach to design high tuning accuracy variable 
IIR filters as a cascade of N identical sub-filters of order 
higher than second is proposed in this paper. The identical 
sub-filters are realized as parallel all-pass structures and their 
sensitivities are minimized to obtain higher accuracy and 
wider range of tuning compared to other known variable 
filters. The limitations of the new approach are investigated 
and simple design procedures are proposed. All theoretical 
results and the superiority of our method are verified 
experimentally. 
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