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Bayesian Super Resolution Estimation 
for EBCOT Compressed Video 
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Abstract - In this paper, a new approach to video enhancement 
based on super-resolution is presented. The proposed method is 
used to enhance video sequences compressed with the 
MotionJPEG2000 standard. It is based on a spatial-domain 
Bayesian maximum a posteriori probability estimator. 
Simulations and real video experiments show improvement in 
the peak signal-to-noise ratio as well as improvement in visual 
quality.  
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I. INTRODUCTION 

In the past twenty years, the area of super-resolution (SR) 
has received considerable attention. Since its beginning, 
dating back to the work of Huang and Tsai in 1984, numerous 
algorithms have been proposed with different levels of 
success. Some of the algorithms approach the SR problem in 
the frequency domain [1], [2]. Some exploit mapping of low-
resolution images onto a HR image plane followed by 
interpolation and restoration [3]. Another approach to SR, 
which incorporates prior knowledge about the solution into 
the reconstruction process, is based on Projection onto 
Convex Sets (POCS). This is done by restricting the solution 
to be a member of a closed convex set of vectors that satisfy a 
particular property [4]. Reconstruction constraints have also 
been used in a statistical estimation framework. The 
constraints can be easily embedded in a Bayesian estimator 
incorporating a prior knowledge about the HR image. Both 
the Maximum Likelihood (ML) and Maximum a Posteriori 
Probability (MAP) estimators have been used. Tom and 
Katsaggelos [5] proposed an ML estimator that estimates the 
subpixel shifts, the noise variance of each image, and the HR 
image simultaneously. A MAP estimator that uses an edge 
preserving Huber-Markov random field for an image prior 
was proposed by Shultz and Stevenson [6]. Hardie et al. used 
a MAP estimator for simultaneous estimation of the image 
registration parameters and the HR image. 

Recently, as the use of compressed video grew higher, the 
problem of enhancing compressed video came into focus.  
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In the last few years several techniques for enhancing 
compressed video have been proposed. Early techniques 

usually estimate subpixel motion vectors (using the 
information from the transmitted ones) before applying the SR 
process [8], [9], [10]. Later on, techniques that simultaneously 
estimate motion field and high resolution frame were 
proposed [11]. Patti and Altunbasak demonstrated the 
importance of the proper handling of the quantization 
information and proposed a solution that explicitly exploits 
the compression process by incorporating the quantization 
information into a POCS-based algorithm that operates in the 
compression domain [12], [13]. In order to establish a 
stochastic framework that can utilize the quantization 
information, Gunturk et al. in [14] model the additive noise 
and than transform it to the compressed domain. A Gaussian 
model for conditional probability is used. In [15] a method to 
experimentally estimate the conditional probability is 
proposed. Bayesian reconstruction methods have also been 
proposed for the minimization of the artifacts introduced by 
the compression process [10], [16]. 

Although the framework developed in most of  the 
aforementioned works is general and can be used with all 
video coding standards where the transform utilized is linear, 
most of them deal with DCT-based standards. On the other 
side, new compression techniques are mostly wavelet-based. 
Usually, the wavelet transform is applied to the image, 
without dividing it into blocks (tiles), although the possibility 
of tiling is still given in JPEG2000. The avoidance of tiles 
eliminates the blocking effect as one of the artifacts of the 
compression process, and consequently the necessity to 
optimize the SR technique for its elimination. High 
compression ratio in JPEG2000 is achieved by optimizing the 
compression through minimization of the MSE for the desired 
bit-rate (Tier 2 coding). The minimization (bit-stream 
generation) phase makes the modeling of the conditional 
probability density function very difficult. In this paper we 
demonstrate the possibility of the use of a Gaussian model for 
the conditional PDF in combination with a prior PDF model 
based on Markov Random Fields.  
 

II. IMAGING MODEL 
 

The observation model for the low-resolution images in the 
video sequence assumes that low-resolution images are 
generated from the high-resolution (HR), ideal, and 
undegraded images, zk. These HR images are representing 
scene values sampled at or above the Nyquist rate. The pixels 
in the low-resolution image are defined as a weighted sum of 
appropriate HR pixels with additive noise, with weighting 
being used to model the blurring that is due to the finite 
detector size and point spread function (PSF) of the detector 
and the optics.  
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Consider low-resolution frames of size N1×N2 pixels. The 
values of the pixels in the k-th low-resolution frame of the 
sequence can be expressed as  
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where ηk,m is additive noise representing the error in 
estimating wk,m. The noise, ηk,m, is assumed to be an 
independent and identically distributed (i.i.d.) Gaussian 
random variable. In Eq. (1), zk,r is the r-th element of the 
lexicographic representation of the k-th undegraded HR 
image. Different model weights for every pixel in the low-
resolution frames correspond to different amounts of motion 
at each pixel during the acquisition of each frame. The 
subpixel motion of every low-resolution pixel relative to the 
HR grid is essential for the estimation of the HR image. We 
can express Eq. (1) in matrix notation as  
 

kkkk nzwy +=                         (2) 
 

The relation between the HR images in a video sequence 
can be expressed as:  
 

( ) 1, −−= kikkk zdCz           (3) 
 
where C(dk,k-i) represents the motion compensation matrix 
from frame k to frame k-i and dk,k-i are motion vectors. Hence, 
the relation between low the resolution images and the 
different HR images is: 
 

  ( ) ikkikkik −−− += nzdAHCy ,              (4) 
 
where A is the downsampling matrix, and H is the filtering 
matrix. 

The low resolution images are than compressed before 
transmission and decompressed at the receiver, yielding  
 
      ( )( )[ ][ ]ikkikkDWTDWTik QQ −−

∗−
− += nzdAHCTTg ,

1            (5) 
 
where TDWT and Q are the transform matrix and the 
quantization operator, respectively.  
 

II. BAYESIAN MAP ESTIMATOR 
 

In order to estimate the high resolution image zk at time k, 
and the matrix of motion vectors d that describes the motion 
between zk and MF+MB neighboring frames, we form a 
Bayesian MAP estimator given the low-resolution 
decompressed frames g and the appropriate prior. The 
estimate can be computed by maximizing the a posteriori 
probability Pr(zk,d|g), which, according to Bayes theorem, 
gives: 
 
       ( ) ( ) ( ){ }dzdzgdz PrPr,|Prmaxargˆ,ˆ kkk =          (6) 
 

or by maximizing the log-likelihood function 
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The probability Pr(d) is ignored since it is not a function of 

zk or d. It is assumed that zk and d are statistically 
independent. 

The first term in Eq. (7) is a conditional probability that 
models the errors in estimating the motion vectors, errors 
introduced during the conversion of the high resolution image 
to the low resolution observation and the noise introduced  
during the compression. Assuming that the error between 
frames is zero-mean i.i.d. Gaussian, we can write: 
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nσ  is the noise variance.  

 
The second term in Eq. (7) is the prior HR image model. 

We assumed a local conditional PDF based on Markov 
Random Fields which penalizes the difference between the 
pixel intensity and the averaged intensity value of its four 
neighboring pixels:  
 

( )






 −−∝ 21expPr kkk azzz

λ
          (9) 

 
where a represents the four neighbors averaging matrix and λ 
is a “tuning” parameter. 

By substituting Eqs. (8) and (9) into Eq. (7) we obtain:  
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The minimization of Eq. (10) is accomplished through a 

cyclic coordinate-descent minimization procedure. At each 
iteration n, the motion parameters estimates are updated 
through a search procedure to minimize Eq. (10) with respect 
to d, given that n

kk zz ˆ= .  
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Adaptive block-matching algorithm is used as a search 

procedure. 
Once the estimate for the motion parameter is found, a 

steepest descent technique is employed to minimize Eq. (10) 
with respect to z and to estimate 1ˆ +n

kz .  

IV. EXPERIMENTAL RESULTS 
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Two sets of experiments were conducted to test the 
performance of the algorithm. The first set of experiments was 
performed on a simulated sequence of images. A single HR 
image was used to produce a sequence of low-resolution 
images, with given subpixel motion. The generated sequence 
of low-resolution images was compressed and decompressed 
using the EBCOT compression algorithm (JPEG2000). In the 
second set of experiments, a real video sequence was used. 

In the first set of experiments, the "cameraman" image was 
used to produce a sequence of three 144 × 176 low-resolution 
images, the second image being shifted -0.3 pixels in both  
directions, and the third being shifted 0.5 pixels in both 
directions. All three images were then compressed with the 
EBCOT algorithm to a compression ratio of 40:1 and 
decompressed. The decompressed images were used as the 
input for the SR estimation procedure. Despite the fact that 
only three images were used, a PSNR gain of 0.85 dB was 
achieved. The visual quality of the image also improved. Fig. 
1(a) shows the original image, Fig. 1(b) shows the compressed 
image, and Fig. 1(c) shows the image obtained after the SR 
procedure was applied. The results shown were achieved with 
λ = 1 and with a fixed-size block matching algorithm in a 
motion estimation procedure with 0.1 pixel accuracy. The 
procedure was stopped after 2 iterations, since no further 
significant visual improvement was noticed.   

 

 
 

Fig. 1(a)  The original "cameraman" image 
 

 
 

Fig. 1(b)  The reconstruction of the EBCOT compressed 
"cameraman" image 

 

 
 

Fig. 1(c)  The SR enhanced reconstruction of the EBCOT 
compressed "cameraman" image 

 
In the second set of experiments, the “coastguard” video 

sequence was used, consisting of 300 frames with resolution 
144×176, recorded at 30 fps.  Fig. 2 shows the PSNR gain for 
all frames following the applicatoin of the SR procedure with 
λ = 1 and motion estimation with 0.1 pixel accuracy. Again, 
the procedure was stopped after 2 iterations, since no further 
significant visual improvement was noticed. The region with 
large negative values in Fig. 2 demonstrates that the SR 
procedure could be destructive for the quality if inappropriate 
parameters are applied. Namely, this region corresponds to a 
particular part of the "coastguard" video sequence, which 
contains very large motion shifts, much larger than the range 
of the motion estimation search window. However, outside 
this region, the average PSNR gain is at the level of 0.5 dB.  

 
Fig 2.  PSNR gain for the "coastguard" sequence 

 
Figs. 3 (a), (b) and (c) show frame #145 of the original, of 

the compressed, and of the SR processed sequence, 
respectively. 
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Fig 3(a)  Frame #145 of the original "coastguard" sequence 
 

 
 

Fig. 3(b)  Reconstruction of frame #145 of the EBCOT 
compressed "costguard" sequence 

 

 
 

Fig. 3(c) SR enhanced reconstruction of frame #145 of the 
EBCOT compressed "coastguard" sequence 

 
V. CONCLUSIONS 

 
An algorithm for video enhancement of video sequences 

compressed with MotionJPEG2000 is proposed, which is 
based on a spatial-domain Bayesian maximum a posteriori 
probability estimator. Simulations and real video experiments 
show improvements in the peak signal-to-noise ratio of up to 
1 dB both in the case of simulated video sequences and in real 
video. At the same time, along with the improvements in the 

PSNR, improvements in the visual quality are achieved as 
well.  
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