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Complex Behavior in Sigma-Delta Modulator  
Cvetko D. Mitrovski 

 

Abstract: In this paper we investigate the dynamic behavior of 
a general class of second order single loop sigma delta 
modulators driven by a constant input. The proposed approach 
is based on nonlinear dynamic analysis of the piece wise linear 
model of the modulator.  
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I. INTRODUCTION 

The sigma delta modulation, as a method of analog to 
digital conversion has attracted much research interest since it 
was for the first time presented in 1962[1]. This technique is 
now finding widespread use in various signal processing 
applications, which is motivated by both, simplicity of the 
design and the fault tolerance to fabrication errors. The last 
two factors make the sigma delta modulators very suitable to 
integrated circuit applications.  

The devices designed on the principle of sigma-delta 
modulation are non-linear systems which convert a time 
sampled analog signal to a stream of bits. Usually, they 
consists one or two integrators and a one bit quantiser in a 
feedback loop. In general, the basic structure could be 
modified by substituting the integrator(s) with any subsystem 
with low-pass or band-pass characteristics, while the other 
parts remain the same. This configuration can be generalized 
as a non-linearity within a feedback path, which is a classic 
route to complex behavior [2].  Therefore, the exact analyze 
of any sigma delta modulator is highly nontrivial.  

In this paper we use nonlinear dynamic to discover the 
properties of a class of single loop second order modulators 
realized with an arbitrary band pass filter operating on the 
boundary of its stability region. This problem is actually   
generalization of the problem of band-pass sigma delta 
modulation analyzed in [3][4].  

In this paper we first model the sigma delta modulator by 
piece wise linear model and after that we analyze the nature of 
its trajectories and their dependence on the parameters and the 
initial conditions. At the end we give some conclusions 
illustrated by our simulation results.  

II. BASIC SIGMA–DELTA MODEL  

The general structure of basic Sigma delta modulator 
consists of integrator and a one bit quantizer in a feedback 
loop.  In general case, the integrator can be substituted by any 

subsystem with a properly chosen transfer function, as shown 
in Figure 1.  

 

 
 

Figure 1. Block diagram of single loop sigma delta 
modulator 

 
In our study we suppose that the integrator(s) is(are) 

substituted by the second order subsystem   
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where: b1 and b0 are arbitrary parameters and θ  is the angle 
which determines the pole positions of W(z) on the unit circle. 
This model is an extension of the model analyzed in [4], in 
which the parameters b1 and b0 were chosen to be  
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The dynamic behavior of this model, can be described by 
the following system of difference equations 
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and xi(k), i=1,2 are the internal states of the modulator. 
   Table -1 
 

i Ri x1(k) x2(k)=x1(k+1) f(i) 
0 R0 x1(k) =0  x2(k)=0 U(b1+b0) 
1 R1 x1(k) >0 x2(k) >0 U(b1+b0)-b1- b0 

2 R2 x1(k) <0 x2(k)>0 U(b1+b0)-b1+b0 
3 R3 x1(k)<0 x2(k) <0 U(b1+b0)+b1+b0 
4 R4 x1(k)>0 x2(k) <0 U(b1+b0)+b1-b0 
5 R5 x1(k)=0 x2(k) >0 U(b1+b0)-b1 
6 R6 x1(k)=0 x2(k) <0 U(b1+b0)+b1 
7 R7 x1(k) <0 x2(k)=0 U(b1+b0)+b0 
8 R8 x1(k) >0 x2(k)=0 U(b1+b0)-b0 
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Since f(.) depends on the terms sign(x2(k) and sign(x1(k), in 
case of constant input u(k)=u(k-1)=U, its values will belong to 
a finite set of nine values given in the table 1.  

III. PIECE WISE LINEAR MODEL  

The above system can be modeled by the piecewise-linear 

map 22:))(( RRk →xF defined by 

 ii Rskk ∈+=+ (k)for     )()1( xbAxx      (5) 
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Ri, i=0,1,2,3,4,5,6,7,8 are disjoint subspaces that cover R2 and 
si=f(i).   

The matrix A is the Jacobian of the map and it has an unit 
module (|det(A)|=1) for any �� 7KHUHIRUH�� WKH� WUDQVIRUPDWLRQ�

A is a rotation on an ellipse with center in origin (0, 0) and 
axis at ± ���� 

According to this, each trajectory starting from any initial 
point will visit the regions Ri i=0,1,…,8 in some order by 
generating an infinite symbolic sequence “s0s1…sk…” 
composed by the indexes of the visited regions. These 
symbolic sequences are generated by some patterns, which 
could be determined by analyzing the position of the images 
of the disjoint regions Ri, (F(Ri)),  i = 0,1,2,..,8 and their 
originals. 

In Figure-2 we have illustrated the transformations of the 
regions R1, R2 R3 and R4 by the map (5) while the 
transformation of the other regions (positive and negative 
parts of the axes Ox1 and Ox2) are not shown.  

The relative position of the images of the regions F(Ri) 
depend on the parameters of the map. If b0<0, then the regions 
F(R1) and F(R2)  (F(R3) and F(R4) are overlapping while for 
b0>0 they are not.   

If F(R1) and F(R2) are overlapping, then the images of R5, 
R6, R7 and R8 satisfy the following relations:  

   )()()( 215 RRR FFF ∩⊂  (6)  

 )()()( 436 RRR FFF ∩⊂  (7)

 6587 )()( RRRR ∪⊂∪ FF . (8) 

Otherwise, F(R5) ( F(R6) ) is equidistant to the parallel sides 
of F(R1) and F(R2) (F(R3) and F(R4)).  

By changing the�SDUDPHWHU� �ZH�PRGLI\�WKH angle of open 
sectors F(Ri), i=1,2,3,4, while by changing of b0, b1 and U we 
influence on their vertical position in R2 and on their relative 
position. With that, we influence on the map dynamics by 
modifying the transition patterns among the regions. Typical 
example for this is the transition from R1 to R1, which could 
be enabled or disabled by choosing the appropriate value for 
the corner points of F(R1) below or above the x1 axis.  

 

IV. UNBOUNDED TRAJECTORIES 

If b0 >0 (2b0=f(2)-f(1)=f(3)-f(4)) the images of the regions 
F(R1) and F(R2) (F(R3) and F(R4)) will not overlap. In that 
case any trajectory starting from any initial condition will 
diverge spirally toward infinity. This phenomenon is obvious 
when f(1)*f(2) <0 ( f(3)*f(4) <0) because in that case, in each 
iteration, the shifting part of the map pushes the image toward 
the exterior of the ellipse.  

If f(1)*f(2)>0 (f(3)*f(4) >0) the trajectories remain globally 
expanding, but they have some local contractions. The smaller 
the gap between F(R1) and F(R2) is, the more dominant local 
contractions are. In this case the trajectories while evolving in 
some regions are pushed, sometimes toward the interior of the 
ellipses and sometimes toward its exterior. Therefore the 
trajectories create curved ellipse like patterns which are 
appearing periodically in the phase space (Figure-3a). By 
increasing the value of b0, the gap between F(R1) and F(R2) is 
increased and the intensity of the local contractions in the 

 
Figure-2. a) Regions of the phase space of the map b) 

Images of the regions Ri,i=1,2,3,4. 
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expanding trajectories is reduced. That leads to elimination of 
the ellipse like curvatures in the expanding trajectories as 
illustrated in Figure 3b). 

V. BOUNDED TRAJECTORIES 

If b0 (b0<0 ) enables even a slightest overlapping of F(R1) 
and F(R2) (F(R3) and F(R4)), then the trajectories of the map 
(5) are bounded by an open concave eight corner polygon. In 
case of U=0, this polygon has a central symmetry.  

No matter whether U ≠ 0 or U=0, all the trajectories that 
start out of this polygon are trapped in it (after a certain 
number of iterations). Therefore we shall concentrate on the 
trajectories which are starting from the interior of this polygon 
and remain in it for all the time. While evolving, these 
trajectories also generate infinite symbolic sequences 
composed of the indexes of the visited regions.  

If the generated symbolic sequence is periodic, then the 
trajectory is either periodic (finite set of points), or dense on a 
finite number of ellipses. If they are periodic, then the 
corresponding trajectories are fractal, and if they are 
eventually periodic, then the trajectories posses his irregular 

part after which they are attracted either by a sets of fixed 
points or by a sets of dense ellipse like orbits.  

The existence of various types of trajectories is illustrated 
in Figure-4 and Figure-5.   

The trajectory shown in Figure-4a has irregular (fractal 
like) initial part which converges to a set of six small ellipses, 
while the trajectory starting from x(0)=(0.00512, -0.0626) 
remains on six dense ellipses. 

In case when b1 = 2*cos(θ ) and b0 =-1, the map (5) models 
the band-pass sigma delta modulator [4]. For this combination 
of parameters b1 and b0, the map generates all tree types of 
trajectories.  In figure 5, we illustrate a fractal trajectory of 
this map, starting from x(0)=(0.016,-0.0485), which visits 
infinite number of ellipses. While evolving it shapes almost 
all the ellipse regions in the phase space from which only 
regular trajectories could be generated (sets of periodic points 
and sets of dense ellipses).  

 

 
Figure 4. Bounded trajectory of the map U=0, θ =1.73, 

b1 = 2*cos(θ ), b0 =-0.001 a) starting from x(0)=(0.00237, 
-0.0123) b) starting from x(0)=( 0.00512, -0.0626). 

 

 
Figure 3 Expanding trajectories  starting from 

x(0)=(0.00237, -0.0123) of the  map  with parameters 
 ������E1=2*cos(1.73)  a) and b0=0.0001. b) b0=0.05 
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So, for a constant input U we could obtain various symbolic 
sequences in dependence of the initial conditions. Since the 
symbolic sequence determines the bit stream output of the 
modeled sigma delta modulator, it means that we could have 
different, even false outputs.  

 
  
 
 
 
 
 
 
 
 
 
 
 

 

 

VI. CONCLUSION 

 
In this paper we have observed a wide class of constant 

input driven sigma delta modulators realized with a second 
order digital filter (operating on the boundary of its stability 
region) and one bit quantizer in a feedback loop. For this class 
of devices we have determined the piece wise liner map which 
describes its internal behavior. After that we have determined 
that the parameter b0 determines the safe operation space.  

In case when b0 >0 the map exhibits unbounded trajectories 
which means that the modeled real sigma delta modulator 
could be damaged due to excessive internal dissipation. In 
cases when b0<0, the map exhibits bounded trajectories which 
cannot damage the modeled device, but its complex behavior 
could lead to different and sometimes false output streams of 
the constant driven real device.  
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Figure 6.  Fractal trajectory of the map U=0, θ =1.7, b1 = 
2*cos(θ ), b0 =-1 starting from x(0)=(0.016, -0.0485).  b) 

Zoomed detail 


