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Influence of Fluctuations of Laser Beam Direction on the 
Bit-Error Rate in Digital Space Communication Systems 

Erwin Ferdinandov1, Tsvetan Mitsev2, Slavyan Saparev3, Boryana Pachedjieva4 

Abstract – BER dependence for ground-to-space digital 
communication systems on the dispersion of laser beam axis 
random deviations from the center of receiving antenna aperture 
due to the turbulence degree of the atmosphere are presented. 
An account is given on the influence of distance, atmospheric 
attenuation, and background spectral radiance. The effects of the 
turbulence noise and photo detection quantum noise on BER are 
compared. 

Keywords – Free space optics, Bit-error rate, Atmospheric 
attenuation, Atmospheric turbulence, Quantum noise. 

I. INTRODUCTION 

The deep space expansion of contemporary civilization is 
accompanied from growing interest to the ground-to-satellite, 
satellite-to-ground and intersatellite free-space 
communication systems. Special attention is paid on the laser 
space communications that offer narrow beam divergence and 
possibilities to create multichannel systems with extraordinary 
high data rate [1-4]. In our work [5] is presented a general 
model analytical description of such a communication system. 

It is very important the fact that narrow field of view and 
respectively too small cross-section of laser beam in the field 
of the receiving antenna aperture increase significantly 
influence of random fluctuation of laser light direction on the 
quality of system parameters. This is quite essential for the 
ground-to-satellite systems in which turbulized atmosphere is 
an initial section of the propagation medium. Atmospheric 
turbulence determines laser beam extension analytically 
described in [6]. Most important are random angular 
deviations of the laser beam from its central axis. Due to the 
great length of the space section of propagation medium as 
well as the relatively small general (diffraction and 
turbulence) beam scattering result, even small angular 
fluctuations of direction of laser beam can cause major cross 
linear deviations of laser beam in relation to receiving antenna 
aperture. Since the optical intensity in the beam periphery is 
smaller than the one in its centre, turbulence cross deviations 
will cause random changes of the optical flow through 
receiving aperture. Therefore, a peculiar turbulence noise will 
be added to the pulse-code signal, i.e. there will be increase of 
the possibility of erroneous recovery of the binary code pulse 
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in a particular one-bit time interval of the signal. This means 
that the value of bit-error rate (BER) will rise. 

Here we provide theoretical research work of the 
relationship between BER and the dispersion of fluctuation of 
laser light direction in different atmospheric and background 
conditions for the ground-to-space digital laser 
communication system. Using the theory of turbulence and 
the theory of laser beam propagation in turbulent medium, 
basically presented in [7-9], an analytical quantity evaluation 
of the influence of turbulence noise on BER value is obtained. 
The developed analytical model describing connection 
between BER and fluctuations of laser beam direction, 
independently of their origin, one can use in design of digital 
space communication systems. 

II. THEORY 

The intensity of Gaussian laser beam which corresponds to 
binary 1 is given by expression 
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where z is the transmitter-receiver antennas distance, y is the 
random linear deviation of the cross section laser beam centre 
from the receiving antenna aperture centre, ΦL is the laser 
pulse energy, τT is the transmitter antenna efficiency, τA is the  
atmosphere transmittance, ε = 1 – е–2 = 0,865, and the 
expression 
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describes the diffraction radius of laser beam on distance z 
from the emitting aperture, r0 = r(z = 0), K > 1 is the 
experimentally determined coefficient to give an account for 
additional broadening of laser beam in the Fraunhofer field 
due to the incomplete initial cross-spatial coherence of the 
laser radiation. 

For the atmospheric transmittance determination the 
Elterman model for extinction is used. As a rule in this model 
light extinction in the optical wavelength range is mainly 
determine from the troposphere and we have 

molaerA .ττ=τ ,                                  (3) 
and 
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where [ ] [ ]( ) 2,0
m

1 km44,1km −− = Sb , Sm is the meteorological 
visual range for z = 0, zA is the troposphere upper limit, and 
τmol(tz = 0 = 20ºC, pz = 0 = 900 mbar, zA = 15 km) ≈ 0,9. 
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The laser beam current diameter of 2r is significantly 
influenced by two groups of spatial turbulence 
inhomogeneities of the refraction index n of atmosphere air: 
relatively small inhomogeneities of l<<2r and relatively big 
inhomogeneities of l>>2r. The influence of small 
inhomogeneities on beam structure expression in its not large 
additional extension with no change of the initial laser beam 
direction z. Quite essential to our analysis appear to be the big 
inhomogeneities, which determine the random angular 
deviations γ of laser beam from the axis z and practically do 
not affect r(z). We shall ignore the influence of small 
inhomogeneities on the beam as well as the relatively weak 
connection between turbulence and diffraction changes of the 
spatial configuration of radiation. On one hand, the two 
currently ignored effects do not determine essential quantity 
changes, and on the other, their consequences are partially 
made up for. 

The physical reason for the γ deviations lies in the 
turbulence determined random phase difference ∆ϕ t between 
the optical oscillations in the central point ρ = 0 and the 
peripheral points ρ = r(z) of the beam cross section. This 
difference is accumulated by radiation distribution through 
turbulent atmosphere layer. It can be localized equivalently in 
the conditional upper border plane z = z t of this layer and 
described by the structural function of cross phase 
distribution, calculated for z = z t: 

                      ( )( )[ ]2ttt ,
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The random phase difference ∆ϕ t has a corresponding 
random cross plane oriented and random size deviation of the 
normal to the wave front of the beam at γ angle in relation to 
the axis z, i.e. one random oriented turn of the wave front of 
the random angle γ in relation to its centre. Of course, this turn 
is simply connected to the longitudinal shift r(z t)γ in the laser 
beam periphery. Therefore, introducing the wave vector 
module k = 2π/λ we can write down 

( )γ=ϕ∆ tt zkr .                                   (6) 
Replacing Eq.(6) in Eq.(5)  results in 
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where 2
γσ  is the γ dispersion (we have 〈γ〉 = 0). 

We use the well known formula for 
tϕ∆D  of a spherical 

wave in homogeneously turbulized atmosphere. i.e. ( )zCn
2 = 

const in the interval z ∈ [0, z t] (with 2
nC  standing for the 

structural constant of n). For z = 0 this interval appears to be 
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In real atmosphere, however, the following gradient is 
observed 

( ) ( ) ( )zfCzC nn 022 = ,                             (9) 
where f(z) is a fast decreasing function (example f(z) ∈ [1; 
0,1] for z ∈ [0, 1 km]). Accepting the Gaussian model 
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in Eq.(9) and replacing real atmosphere with an equivalent 
homogeneously turbulized layer at ( )022

eq, nn CC = , we find 
out 
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With the condition f(1 km) = 0,1 in Eq.(10), the calculation 
of Eq.(11) results in t,eqz  ≈ 0,6 km. 

Equalizing Eqs.(7) and (8) leads to 
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For y we have the following relation 
( )γ−= eqt,zzy ,     0=y ,                        (13) 

where z stands for the distance to space correspondent. Based 
on Eq.(13) we can write down 
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and replacing Eq.(12) in Eq.(14) we receive 
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The expression for signal power in the receiver aperture is 
ΦL(z, y) = πR2τRI(z, y). Here τR is the receiver antenna 
efficiency and R is the radius of the receiver aperture. Using 
ΦL the cathode signal current of photomultiplier (PMP) is 
calculated by 

( ) ( ) ( )yzzWyzi ,,S ψ= ,                         (16) 
where 
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hc
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In Eqs.(17) and (18) Si is the light output-current efficiency of 
PMP cathode, η is the quantum efficiency of PMP, e = 
1,6.10−19 C, h = 6,626.10−34 Js, c = 3.108 m/s. 

As the distance y fluctuate, the function ψ(z, y) in Eqs.(1) 
and (16) is random and the current iS(z, y) fluctuate too. We 
accepted that the probability distribution of y is Gaussian with 
mean value my = 0 and dispersion 2

yσ . Using the expression 
for ψ(z, y) given in Eq.(1) we find [6] 
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and from Eq.(16) 
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where ( )zmiS  is the mean signal current for the one bit time 
interval when we have binary 1. 

Dispersion of current quantum fluctuations in the PMP 
cathode circuit is expressed as 
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are the dispersions of quantum fluctuations of signal current, 
background current, and dark current respectively, ib is the 
mean value of background current, and id is the mean value of 
dark current, both last for the time interval with binary 1. 

The mean dark current is defined by 
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where ida is the PMP anode dark current, and Gi is the PMP 
current gain. They are catalogue parameters. 

It is easy to find the expression 
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where Lbλ is the background spectral radiance, (∆λ)IF is the 
optical bandwidth of the interference filter before the PMP, Rp 
is the radius of the PMP aperture, feq is the equivalent focal 
length of the receiver antenna. 

As we mentioned above iS(z, y) is the random function of y. 
That is why ( )2,

S yi zm σ  is figured in (11) instead of  iS(z, y). 
To calculate BER we use the expression 
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where 
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is the tabulated function, and N is the excess-noise factor of 
the PMP due to the amplification. 

In order to estimate the effect of turbulence noise for the 
increase of BER  we use the Eqs.(15) and (25). The following 
relation is made up 
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where (BER)0 corresponds to BER without considering 
turbulence. The Turbulent-to-Quantum Noise Ratio (TQNR) is 
estimated by the formula 
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III. CALCULATIONS 

On the basis of the relations (1-25) an example calculation 
was done. The input parameters are: τT = 0,8; τR = 0,6; r0 = 10 
cm; ΦL = 0,5 W; λ = 0,53 µm (yttrium aluminium garnet with 
3-valent neodymium); ∆f = 100 MHz; K = 6; (∆λ)IF = 20 Å; R 
= 4 cm; η = 0,1; Rp = 3 mm; ida = 10 nA; Gi = 107; feq = 0,5 m; 
N = 1,5. 
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Fig. 1. BER as a function of 2

yσ  of random deviations y  

for Sm = 10 km, Lbλ = 10-2 W/(m2.sr.Ǻ) and distances z: 
1 - 6200 km;  2 - 5600 km;  3 - 5000 km;  4 - 4400 km;  5 - 3800 km 
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Fig. 2. BER as a function of dispersion 2

yσ  of random deviations y  

for z = 5000 km, Lbλ = 10-2 W/(m2.sr.Ǻ) and visibilities Sm: 
1 - 5 km;  2 - 10 km;  3 - 15 km;  4 - 20 km;  5 - 25 km 
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Fig. 3. BER as a function of dispersion 2
yσ  of random deviations y  

for z = 5000 km, Sm = 10 km and background spectral radiances Lbλ: 
1 - 10-1 W/(m2.sr.Ǻ);  2 - 10-2 W/(m2.sr.Ǻ); 3 - 10-3 W/(m2.sr.Ǻ); 

4 - 10-4 W/(m2.sr.Ǻ) 



 194 

The BER results are shown plotted as a function of 
dispersion of random deviations y for different distances z 
(Fig.1), different meteorological visual ranges Sm (Fig.2), and 
different background spectral radiances Lbλ (Fig.3). The 
dependence of BER on ( )02

nC  for different distances z is 
shown in Fig.4. Plots of the function Eqs.(26) and (27) are 
shown in Fig.5 and Fig.6 respectively. 
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Fig. 4. BER as a function of structural constant ( )02

nC  of the 
atmospheric turbulence for distances z: 

1 - 6200 km;  2 - 5600 km;  3 - 5000 km;  4 - 4400 km;  5 - 3800 km 
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Fig. 5. β as a function of structural constant ( )02

nC  of the 
atmospheric turbulence for distances z: 

1 - 3800 km;  2 - 4400 km;  3 - 5000 km;  4 - 5600 km;  5 - 6200 km 
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Fig. 6. Turbulent-to-Quantum Noise Ratio as a function of structural 

constant ( )02
nC  of the atmospheric turbulence for distances z: 
 1 - 3800 km;  2 - 5000 km;  3 - 6200 km 

IV. CONCLUSION 

The BER values increase significantly with increase of the 
dispersion of random linear deviation y of the cross section 
laser beam centre from the receiving antenna aperture centre 
as is seen from the plots. It is easy to explain BER increase 
with change for the worse of the meteorological conditions 
and with reinforcement of the background spectral radiance 
(Fig.2 and Fig.3). Peculiar behavior of the curved lines 

( )2
yBER σ  with z = vary on Fig. 1 is due to the circumstance 

that for small values of z the diffraction broadening of the 
laser beam is more weak and its peripheral parts more 
probably fall into receiver antenna aperture.  Fig.4 and Fig.5 
clearly show that BER and β increase with ( )02

nC  relatively 

slowly in the example interval ( )02
nC  < 5.10−16 m−2/3. 

However, further increase of turbulization extent results in 
sharp increase of both gradients. Quite interesting appears to 
be the fact that the relative effect of turbulence noise is bigger 
at small distances. Such strange at first sight behavior of β can 
be easily explained if bearing in mind that, for example, for 

( )02
nC  ≈ 10−15 m−2/3 we have (BER)0 ≈ 10−12 for z = 3800 km 

and (BER)0 ≈ 10−5 for z = 6200 km. The curves in Fig.6 show 
that at relatively weak turbulence the quantum noise 
dominates over the turbulence one while at relatively strong 
turbulence it is the other way round. The two types of noise 
are commensurable for ( )02

nC  ≈ 3.10−15 m−2/3. 
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