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Study of Clutter Influence on a Differential BPSK De-
coder, Providing a Minimal Intersymbol Interference 
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Abstract– This paper studies both Doppler shift and additive 
white Gaussian noise influence on a differential BPSK decoder 
which includes matched filters in its in-phase and quadrature 
channels. Results about probability density function of the out-
put signal and probability of error at the output are obtained. 
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interference, matched filter, phase difference rejection, Doppler 
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I. INTRODUCTION 
The mobile communication channels suffer from additional 

influences in comparison with the wire channels. Some of 
them are Doppler shift, high level noise and multipath. These 
phenomena and to be more precise their stochastic nature 
makes equipment performance estimation difficult to access. 
But in present days with the frequency spectrum overloading 
and object speed increasing, the demands and requirements to 
service quality of communications in mobile environment 
grow, too. Realistic and practical applicable results can be 
obtained only if the joint clutter influence of the damaging 
factors and technical limits are considered together. 

Here the performance of a differential BPSK decoder, de-
scribed in [2], suffering from clutter influence of Doppler shift 
and additive white Gaussian noise (AWGN) is researched. 
The single path propagation of the signal through the radio-
channel is presupposed. 

II. SIGNAL PROCESSING IN THE RECEIVER 
The mixture of a useful digital modulated signal r(t) and 

AWGN at the front end of the receiver is described as: 
 

)t(n)tcos()t(R)t(r G0 +ω= .  (1) 
 

The diagram shown in Fig.1 describes the main elements of 
the signal processing in the receiver. 

The receiver design in any case requires the frequency band 
of the receiver to be limited and this is taken into account by 
band-pass filer (BPF) including. In this manner the noise after 
BPF can be described as a narrow-band process: 
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The Doppler shift is introduced by a frequency offset ωD of 

the receiver local oscillator. In this manner frequency recov-
ery inaccuracies can be marked, too. 
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The results from down converting in the in-phase I-channel 
and quadrature Q-channel are: 
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The matched filters are low-passed filters by nature and 

hence they reject the components around doubled carrier fre-
quency effectively. The signals at the filter outputs are: 
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These signals are sampled in order to reject the inter-

symbol interference and then they are differentially decoded.  

III. RESEARCHES 
The studies of the decoder, which is described above, in 

presence of Doppler shift show that the influence of Doppler 
shift is hardly seen and there is no need to take it in account, 
when practical system is considered – Globalstar for example. 

Studies of the output signal distribution at different values 
of signal to noise ratio (SNR) are done. In [1] is shown that 
the energy of signal is equal to the chip duration value TC. 
This value is used in order to calculate the variance of the 
continuous AWGN. When the noise is simulated this one is a 
discrete process and its variance is related to that of continu-
ous process by the Eq. 5: 
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where Δt=π/ω0 is the sampling period. 

In order to obtain results about the distribution of the output 
signal at each SNR 10 000 realizations are used. The values of 
the window width and the roll-off factor are chosen in keeping 
with recommendations produced in [2]. Enough statistics is 
provided by rounding off to 0.02 of the output signal values. 
The designed software uses numerical integration in order to 
calculate the convolution between the input signals and im-
pulse responses of the matched filters in both of quadrature 
channels. The frequency of occurrence for each output signal 
value at concrete SNR is calculated. Actually it is the distribu-
tion of the output signal. Some of the results are presented in 
the following figures 

The output signal distributions at values of 1 and 3 for the 
roll-off factor and the relative window width respectively are 
shown in Fig.2. 
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Fig.1 Model of the receiver. 
 

 
Fig.2. Distributions of output signal at ρ=1 and 2k=3. 

 
The results show that the lower SNR leads to a wider output 

signal distribution. The values with the highest frequency of 
occurrence are far enough from zero even at SNR of 2 dB. It 
is obvious that the distribution at SNR of 10 dB is much nar-
rower than this one at 2 dB. The values with the highest fre-
quency of occurrence are closer to -1 and +1 respectively at 
the higher SNR. 

Many more than 10 000 realizations are needed to calculate 
the probability of error. This is unpractical because too much 
time would be wasted to obtain results. It is advisable to ap-
proximate the probability density function (PDF) of output 
signal by using its distribution obtained from realizations. 

In case of Gaussian channel the distribution of output signal 
possesses a Gaussian (normal) distribution. The normal prob-
ability density function is given by: 
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where m is the mean value and σ2 is the variance. This is the 
continuous distribution and it is used in order to obtain the 
discrete distribution by next equation: 
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where Si are the discrete values of the output signal and ∆S is 
the discrete step between two adjacent values. 

The integral of normal probability density function in Eq.7 
can be solved by means of famous error function [3]: 
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The discrete distribution is derived from Eq.7 and Eq.8: 
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The optimal mean value m and the root mean square σ at 
which the equation (9) best fits the obtained distribution of the 
output signal are calculated. Then they are substituted in (6) 
and the probability density functions which best fit to the out-
put signal distribution are obtained. 

The approximated probability density functions of output 
signal at values of the roll-off factor 1 and the relative window 
width 3 are shown in Fig.3. 
 

 
Fig.3. PDF of the output signal at ρ=1 and 2k=3. 
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It is clearly seen that the probability for output signal to ex-
ceed zero, when -1 is transmitted, is higher at lower SNR. The 
probability for output signal to be below zero, when +1 is 
transmitted, is higher at lower SNR, too. These two cases de-
termine the error level at the decoder output. 

The distributions of the output signal at values of 0.5 and 6 
for the roll-off factor and the relative window width respec-
tively are shown in Fig.4. 

 

 
Fig.4. Distributions of the output signal at ρ=0.5 and 2k=6. 

 
The results show that the distribution of output signal in 

this case is narrower than in the previous one. Thus the output 
signal values are more concentrated around -1 and +1 respec-
tively. This leads to lower error level at the decoder output. 

The approximated probability density functions of output 
signal at values of the roll-off factor 0.5 and the relative win-
dow width 6 are shown in Fig.5. 

 

 
Fig.5. PDF of the output signal at ρ=0.5 and 2k=6. 

 
Fig.5 shows that the mean values of probability density 

functions are closer to -1 and +1 respectively in comparison 
with the previous case. The variances of probability density 
functions are smaller and consequently the probability of error 
is lower. 

The distributions of the output signal at values of 0.4 and 9 
for the roll-off factor and the relative window width respec-

tively are shown in Fig.4. The comparison between these dis-
tributions of the output signal and previous distributions 
shows that they are wider than these at the roll-of factor 0.5 
and the relative window width 6, but they slightly differ from 
those ones at the roll-of factor 1 and the relative window 
width 3. This is a result from windowing of the impulse re-
sponses of the shaping and matched filters in the transmitter 
and the receiver respectively [2]. 

 

 
Fig.6. Distributions of the output signal at ρ=0.4 and 2k=9. 

 
The approximated probability density functions of output 

signal at values of the roll-off factor 0.4 and the relative win-
dow width 9 are shown in Fig.7. 

 

 
Fig.7. PDF of the output signal at ρ=0.4 and 2k=9. 

 
The more precise analysis of the results indicates that the 

approximated probability density functions in Fig.7 are nar-
rower than these in Fig.3. This means that the error levels are 
lower at cases displayed in Fig.6 and Fig.7 than these dis-
played in Fig.2 and Fig.3, but the differences between them 
are too small. A conclusion that the even number of the rela-
tive window width leads to lower error level than cases of odd 
such number can be done. The results shown in the following 
figures confirm this inference. 

The distributions of the output signal at values of 0.4 and 4 
for the roll-off factor and the relative window width respec-
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tively are shown in Fig.8. It is obvious that these distributions 
are more concentrated around -1 and +1 respectively than 
those in Fig.6. This leads to narrower probability density func-
tions and consequently to lower error levels. 

 

 
Fig.8. Distribution of the output signal at ρ=0.4 and 2k=4. 

 

The approximated probability density functions of the out-
put signal at values of the roll-off factor 0.4 and the relative 
window width 4 are shown in Fig.9. 

 

 
Fig.9. PDF of the output signal at ρ=0.4 and 2k=4. 

 

It is easy to find that if +1 is transmitted, the area under this 
part of the probability density function where the output signal 
magnitude is below 0, is much smaller than in the case shown 
in Fig.7. The same one is valid for the part of probability 
function where the output signal magnitude exceeds 0 when -1 
is transmitted. The value of PDF at output signal magnitude 0 
and SNR 10 dB in Fig.9 is below 0.2, while the corresponding 
PDF in Fig.7 exceeds 0.3 i.e. it is almost twice greater. Fur-
thermore it is obvious that the values of PDF at output signal 
magnitudes -1 and +1 in Fig.9 are higher than these in Fig.7. 

The probability of error can be calculated by obtained quan-
tities of the mean values and the variances and Eq.6: 
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where m1 and σ1
2 are the mean value and the variance when 

+1 is transmitted; m2 and σ2
2 are the mean value and the vari-

ance when -1 is transmitted. 
The examination of the error probability as a function of 

SNR at different combinations of the roll-off factor and the 
relative window width values is done, too. Some of the ob-
tained results are shown in Fig.10. 

 

 
Fig.10. Probability of error as a function of SNR. 

 
It is obvious from the results that the behavior of the prob-

ability of error at the parameter pairs 2k=3, ρ=1 and 2k=9, 
ρ=0.4 is the same. The steepest slope of the function is at pair 
2k=6, ρ=0.5 and very likely this is the optimal parameter pair. 

IV. CONCLUSION 
The studies of the differential BPSK decoder show that it 

possesses good characteristics in the presence of additive 
white Gaussian noise. It is better an even value of the relative 
window width to be used. Thus the lower error probability is 
provided in comparison with the case of an odd value. The 
results display that for even value the error probability de-
creases when the relative window width increases. The de-
coder provides the error probability below 10-6 when SNR 
exceeds 14 dB in the worst case. Obtained results prove that 
the practical development of such decoder is useful. 

The recommendations in [2] should be kept in mind when 
the decoder parameters are chosen. Detailed studies and ana-
lysis of the influence of different factors and parameters 
should be done during development of a practical scheme of 
the pair encoder/decoder. Thus the best parameters can be 
chosen and the best results can be reached. 
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