

273

The Redesign of the Software of the DKTS 30
Switching System to Support Extended Capacity

Branko Kolašinović1, Dimitar Komlenović1, Milan Jovanović1

Abstract – Some software solutions implemented in the project
of extending capacity of the DKTS 30 switching system were
presented in this paper. This project includes: a redesign of the
system image, a redesign of the interprocessor communication,
more natural integration of the remote subscriber unit into the
system, algorithms for distributed systemsupervision,
appropriate changes in the system data base and the graphical
user interface.

Keywords – switching system, embedded real-time software,
DKTS 30

I. INTRODUCTION
The DKTS 30 public digital telephone exchange is the

newest product from the series of DKTS digital telephone
switching systems. Although it has been successfully
commercially exploited since 1999, it is still under
development in order to achieve better quality, provide new
services and reduce the production price.

II. PROBLEM
The first DKTS 30 public digital telephone exchange was

designed to provide the capacity of 15872 subscribers.
However, this number was shown to be insufficient with the
uprising market demands. Therefore, the project of extending
the capacity was undertaken. The project goal was to provide
the maximum capacity of 174592 subscribers. All the
necessary changes in the hardware were presented in [1]. This
paper presents software changes, while hardware changes
were presented in a degree of detail that was necessary to
understand the presentation to follow.

The project requirement was not only to trivially provide
capabilities for a larger number of blocks in the system, but
also to pay specific attention to the system performance. It
was highly unlikely that the algorithms that were shown to be
efficient with one traffic load would be efficient in the same
way with much heavier traffic load.

The project of extending capacity comprised changes in
several categories of the DKTS 30 software. The categories
that needed changes were: the system image, the
interprocessor communication, the interprocessor
communication monitoring, the system database and the
graphical user interface. Furthermore, with these redesigned
categories, it was necessary to implement new algorithms for
distributed system monitoring and to obtain a more natural
integration of remote subscriber blocks.

As far as software compatibility is concerned, it was
decided to obtain compatibility of the newly designed
software with the old hardware, but not with the old software.
This means that the new software may run on all DKTS 30
platforms, but it must not be mixed with old software. The
goal was to move beyond some obstacles that were present in
previous software solutions due to required compatibility with

the DKTS 20 system, which was put aside in the meanwhile.
Special attention was payed to the intermediate period in order
to make it possible to add new funcionalities to the software
of the old system as well as to the software of the system with
extended capacity.

III. SYSTEM ARCHITECTURE
The DKTS 30 system architecture is given in Figure 1. The

system consists of central blocks, peripheral blocks, and
terminals. The central blocks are: administration (ADM),
switching (KOM), synchronization (OSC), source of speech
information (GGI) and USP (Universal Signaling Processor).
The USP unit consists of a UCP (Universal Communication
Processor) unit and a signaling processor, connected via an
HDLC link. The UCP unit distributes messages among central
and peripheral blocks. In order to increase system reliability,
central blocks are duplicated. Central blocks are connected via
a local Ethernet, which is doubled, too All central blocks,
except USP units, are connected to both Ethernet networks.
The terminals can be local or remote. The local terminals are
connected to the administration blocks via a separate local
Ethernet.

Peripheral blocks are connected to UCP blocks via serial
HDLC links. A pair of UCP units works in a load-sharing
mode for a group of six peripheral units. Each of these six
peripheral units is connected to each of two UCP units by its
own separate link. Peripheral blocks (PB) are subscriber
blocks and interexchange trunks. Peripheral blocks are
originally developed boards based on the Motorola 68302
family of processors and on the originally developed
operating system. Voice transmission is achieved by the PCM
multiplex that connects peripheral blocks to the switching
block.

A remote subscriber unit is realized using an IUUB4 block
which combines 4 subscriber blocks with 128 subscribers on
each. That gives the maximum capacity of 512 subscribers.
The function of the remote subscriber unit is to map
subscriber block interfaces. In this way, software of the
central UCP module does not make a difference whether a
block is a local or a remote one.

The administration unit is an industrial PC. The DKT3 30
application for the administration unit may run under various
operating systems, such as Windows NT/XP or Linux. Other
central blocks are originally developed boards based on the
Motorola 68360 family of processors. Software for these
boards may also run under different real-time operating
systems, such as pSOS and RTEMS. The terminal unit is a
common PC. The operating system used on this unit is
Windows NT. The application that runs on this unit is called
GUI (Graphical User Interface) and represents the interface
between the operator and the DKTS 30 system.

1 PUPIN TELECOM DKTS, Batajnički put 23, Belgrade, Serbia
E-mail: {brankok, dimitark, milanj}@ dkts.co.yu

274

USP USP UCP

KOM2KOM1
AB1 AB2

Terminal

Terminal

Ethernet1
Ethernet2

Ethernet3

PB
1 4

HDLC

HDLC

PB
1

6

HDLC

OSC 1 OSC 2

NO7

USP

USPGGI 1 GGI 2

IUUB4
local

IUUB4
remote

..
.

Figure 1: The DKTS 30 system architecture

IV. SOFTWARE ORGANIZATION
The DKTS 30 software is based on object-oriented

principles. [2] It is developed using UML notation, and
implemented in C++ programming language. Software is
organized hierarchically into layers. Each layer provides a
service to the layer above it, and simultaneously it is a client
of the layer below it.

One of the main challenges facing DKTS 30 software
engineering is the variety of microprocessors (Motorola 68360
and Intel family are present, processors from the PowerPC
family are planned for future use), as well as the variety of
operating systems that run on different parts of the DKTS 30
switching system (WinNT, Linux, pSOS, RTEMS).

The software is organized as a collection of server objects
that are distributed among processors. Main system
abstractions are modeled with server objects. These servers
are implemented as finite state machines (FSM), which is a
common approach in design of embedded real-time systems
[3]. Each FSM is designed according to the Bridge template
[4], and consists of an interface and an implementation object.
Interface and implementation objects may reside on the same
processor or on different processors, and the only connection
between them is their unique identifier.

The well known CVS (Control Version System) tool is
being used to control file versions. CVS lets a developer
maintain a detailed revision history of a file that is under its
control.. In this way, it makes the reconstruction of any
previous version possible. Since there is typically more than
one developer who works on the same file, CVS is of great
help, because it allows multiple users to work on a file
concurrently.

V. NUMERATION OF BLOCKS
Software of the first DKTS 30 system was developed in

order to be flexible within the requested maximum capacity.
Each block in the system had its determined identification
which depends on the block’s position. Blocks of the same
type have successive identifications. The first DKTS 30
system can host the maximum number of 256 blocks, where

the numeration for peripheral blocks starts from 128.
According to the request of the project, the existing
numeration had to be changed, which was the source of
incompatibility difficulties. In order to simplify the routing
algorithm, it was decided that every potential position in the
topology of the system with maximum capacity had its own
identification representing block’s physicall address.
Therefore, it was necessary to provide space for a number of
3000 blocks, where the numeration for peripheral blocks is
agreed to start from 1000. Of course, the possability that the
real system would have each position filled is relativelly
small.

Another problem were 4-bytes long internet addresses that
represented blocks’ network interfaces. In the first system,
one byte held processor identification, another byte held
network identification, while two bytes held identification of a
switching system in a WAN network. In the system with
extended capacity, the 4-bytes internet address were retained.
Also, two bytes of the address are used for the switching
system identification. Since the unique recognition of each
block implies the number of 12 bits, the byte that was
assigned to the network identification was devided into two
nibbles. Since the identification of blocks that are connected
to the Ethernet is held in one byte, in order to make switching
system’s internet addresses equal to internet addresses of
network interfaces of blocks that are connected to the
Ethernet, it was decided to add the higher nible of the network
byte to the procssor identification byte (in total, 12 bites that
are not near-by), while the lower nibble should represent
network identification.

VI. SYSTEM IMAGE
In order to monitor system behavior as easy as possible and

to use collected information in the most efficient manner, a
software category called system image is developed. The
system image represents the database with all the relevant
information regarding state of each resource needed for the
interprocessor communication. The system image consists of
two subcategories. The central image subcategory represents
the image of the whole system with all the necessary

275

information and it is only located on processors with the
administrative function. It consists of a map of processors and
a map of network interfaces. The local image subcategory is a
part of the system image that is located on each processor. It
contains all the data structures needed for the implementation
of the efficient interprocessor communication. The local
image consists of a map of physical processors, a map of
internet addresses, and a routing map.

The initialization of data structures within local image is
performed according to the central image of the master
administrative processor immediately after software has been
downloaded to the specified processor and just before the
processor starts to communicate with other processors. The
local image states are being brought up to date by sending and
processing messages that contain information on activation or
failure of processor units and network interfaces. Furthermore,
local image states are also being made current by sending of
central image from the administrative processor. In the first
DKTS 30 switching system, this was done according to the
defined pattern for the system with the highest capacity.
Although the procedure was optimized, the problem of adding
new block types remained present during the evolution of the
system. Every time a new block type was added, the software
for all boards had to be changed, even for boards that were not
communicating with the newly added block type. That is why
a new procedure was developed for the system with extended
capacity. According to this procedure, every block first
receives the message that precisely specifies the format of
messages that will be used for local image update. By adding
this message, the repetition of information in the header of
messages that are send in order to make local image current
was avoided. Furthermore, dynamic adding of new block
types was made possible. Finally, messages that are sent for
the purpose of bringing local image up to date may be as long
as it is needed, since the information on boards that are not
configured are not being sent.

VII. INTERPROCESSOR COMMUNICATION
A basic requirement for the design of interprocessor

communication was to reduce the number of messages
passing through the system, as well as to provide higher
reliability of interprocessor communication. In order to fullfil
these requirements, it was necessary to make some changes in
a message header. The message header remained of the same
length as it was. It contains the same fields as in the previous
implementation: message type, source and destination internet
address, message identification, destination object's
identification. However, some changes were inevitable. First
of all, the format of internet address had to be changed. Next,
the way message type is marked was also changed. As a result
of these changes, incompatibility with the previous software
implementation became unavoidable. Among other things,
with the new message caracterization, it became possible for
clients in upper software layers to supress acknowledgement
messages on the protocol layer when functional messages are
used to acknowledge an application layer acknoledgement
request.

In the aim of acchieving faster interprocessor
communication, the SP protocol was abandoned. The SP
protocol was used for communication between peripheral and

UCP blocks via HDLC links [5]. The reason for the presence
of this protocol in the previous implementation lay in
requested compatibility with DKTS 20 peripheral blocks.
Since the concept has been abandoned in the meanwhile, the
NLC layer of the interprocessor communication protocol stack
was eliminated. In adition to this, another historical role of the
UCP board, which also existed due to requested compatibility
with DKTS 20 peripheral blocks, became unnecessary in the
new software environment. That was the NLB layer whose
task was to perform message format conversion between
DKTS 20 and DKTS 30, and vice verse.

 The design of the first DKTS 30 switching system did not
support communication between UCP and No7 boards
belonging to one Ethernet with UCP/No7 boards that belong
to another Ethernet. However, during the exploitation phase,
the need for communication between No7 peer boards was
brought to attention. In addition to this, there was the need to
put interprocessor communication under software supervision.
Accordingly, it was decided to correct this defect by allowing
software routing from one Ethernet to another. Central blocks
that have available network interfaces belonging to both
Ethernets became potential routers. It was more than likely
that this task would be commited to the OSC board, since the
OSC board is the processor that is not overloaded with
interprocessor communication responsibilities. The routing is
now supported in system image. In addition to everything
else, this routing may be used in the case of a failure of a
network interface on boards with two network interfaces. For
example, in previous software versions, the KOM board with
an inactive network interface that belongs to the Ethernet A
could not send a message to a UCP or No7 board connected to
the DKTS 30 WAN network via network interfaces belonging
to the Ethernet A.

A reduction of the number of messages passing through the
system is acheived by the use of multicast techniques [6].
Instead of sending a large number of single messages to
different destinations, it is now possible to send only one
multicast message that is received by all procesors that are
members of the specified multicast group. The great problem
was the presence of several operatin system in the DKTS 30
switching system, each of which providing similar (but
different) programming interface towards the multicast
facilities. In addition to this problem, it was important to
provide that all processors in the group receive a multicast
message, but also to avoid duplicated messages, which may be
the consequence of the use of alternative routes. Periodical
updating of local image, sending information on block or
network interface failure or activation, periodical checking of
block states, sending error reports to terminals are cases in
which it is evident that significant improvements in speed and
efficiency are achieved.

VIII. SOFTWARE SUPERVISION
Software supervision is responsible for timely and reliable

detection of block failure and activation, failure and activation
of network interfaces, software download to peripheral blocks,
efficient monitoring and error recording, as well as
undertaking actions in order to cope with irregularities or to
alarm error conditions to operators.

276

Previous software versions were based on a centralized
approach, according to which the administrative unit was
collecting information and performing actions. This was an
acceptable solution. However, with the extention of the capacity
of the public telephone exchange, it was necessary to migrate
from centralized to decentralized algorithms. The administrative
unit has nevertheless the main role in software supervision, yet it
delegates some software supervision functionalities to other
central blocks in the system.

For example, in the previous implementation, the
administrative unit was checking processor states for all blocks in
the system. As a result of the use of decentralized algorithms,
periodical checking of the activity of peripheral processors is
now delegated to UCP processors. This means that the
administrative unit sends request messages to UCP processors
ordering them to perform the inspection of peripheral blocks
connected to UCP boards. As a result, the number of messages
needed to provide some funcionalities is decreased, which
contributes to decreasing system overload and shortening time
needed for obtaining information of the overall system status.

IX. IUUB4 BLOCK
The IUBB4 block is maybe one of the most important element

in the project of extending capacity of the DKTS 30 switching
system. As a result of the use of the IUUB4 block, significant
increase in the number of subscribers is provided. The new
IUUB4 block is connected to the UCP block by only one HDLC
channel, instead of four, as it was in the previous solution, where
IUUB4 blocks were transparent both on the side of the telephone
exchange and on the side of subscriber blocks, which means that
other blocks in the system were not aware of their existance.
Software on this block was running from the EPROM memory.
However, this concept was changed. The IUUB4 software is now
being downloaded to the IUBB4 board from the administrative
unit, as well as it is performed for other boards in the system. Not
only does the administrative unit perform download, but also it
inspects IUUB4 processor activity, informs IUUB4 blocks on
failure or activation of other blocks in the system. In other words,
the IUUB4 block is being treated the same way as any other
block. The algorithm for the IUUB4 software download is
distributed. That means that the IUUB4 executable is firstly
downloaded from the administrative unit to the UCP board, and
then it is uploaded to the IUUB4 block.

X. SYSTEM DATABASE
Modern switching systems require storing of huge amounts of

data very economically and reliably. These data are necessary for
handling calls, i.e. establishing and terminating connections, as
well as for different periodical data processing performed by an
operator. The database of switching system is used for storing
specific system parameters needed for the functionality of the
overall system. The system database contains parameters that
describe hardware configuration (blocks configuration, their
physical and logical addresses), parameters needed for
establishing connections with other switching systems, as well as
data needed for performing different functionalities, such as users
data, billing prices, information services, etc.

The database software, apart from storing large amounts of
data, must enable fast searching through the database and finding
the data needed to satisfy the request for establishing connections
in real-time. Apart from that, this software has to offer consistent
data at anytime, to guarantee protection of data and to prevent
unauthorized access. It is obvious that the capacity extension of
the DKTS 30 switching system imposed changes in the DKTS 30

database in order to qualify this software category for the heavier
traffic load.

XI. GRAPHICAL USER INTERFACE
Together with the changes in other parts of the DKTS 30

software, the changes were needed in the GUI application. Not
only were there the need to change the graphical representation in
order to show a large number of blocks, but also it was needed to
adapt the GUI application to the situation of more intense traffic
load, i.e. increased amounts of data coming from the
administrative unit, processing larger files quickly and
efficiently, etc.

XII. TESTING
Because of the large number of different processor types,

different hardware platforms, various operating systems,
situations in which it is necessary to perform potential error
corrections in the field and in laboratory conditions, concurrently
with adding new funcionality to the fisrt DKTS 30 system, a
great attention was payed on developing methodologies for
software testing. As a result, a set of tests was designed. The set
comprised different testing techniques: from the partial to the
integral testing, with and without the use of call generator, etc. In
the testing phase, the use of error information is increased.
However, the great part of this code will be excluded from the
final version in order to assure executable programs with the
minimal time of execution. In addition to this, finite state
machines whose only purpose is testing are designed. The FSM
whose only task is to generate desired traffic is instantiated on
every processor. This is an example of how interprocessor
communication is tested.

XIII. CONCLUSION
A flexible base for the switching system with extended

capacity was provided. The change of the maximal capacity
required a redesign of some critical algorithms and transition to
distributed and heterogenous solutions. A lot has been done in
order to decrease the number of messages passing through the
system, which, in the last instance, may make the response time
to certain events significantly shorter.

Because of the decision to abandon compatibility with DKTS
20 peripheral blocks, it was convenient to undertake a redesign of
the system software on peripheral blocks, which was shown to be
a complex task contributing to the slowdown of the entire project.

Once the project of extending capacity has been completed, it
is expected that the work on the DKTS 30 system in order to
increase its performance will continue. It remains interesting to
see the results of the quality analysis of the behavior of the first
DKTS 30 and the DKTS 30 with extended capacity.

XIV. LITERATURE
[1] S. Laketa, P. Vidić, N. Nikolić, “Extending capacity of the DKTS

system,” Telfor 2003, Beograd, 2003.
[2] Booch G., Object-Oriented Analysis and Design, Second Edition,

Benjamin-Cummings, 1994.
[3] Selic B., Gullekson B., T.Ward P., Real-Time Object-Oriented

Modeiling, Willey Professional Computing, 1994.
[4] Gamma E., Helm R., Johnson R., Vilsides J., Design Patterns –

Elements of Reusable Object-Oriented Software, Addison-Wesley,
1994.

[5] M. Jovanović, V. Hiršl, “Interprocessor communication in DKTS 30
switching system,” YU INFO 1999, Kopaonik, 1999.

[6] Deering, S., “Host Extensions for IP Multicasting,” RFC 1112, 1989.

