

283

The Interaction Of The Web Technologies
In Integrated Marketing Information System

Veselina Ivanova Nedeva1

Abstract: The report presents the different approaches of
interaction of the information technologies, which now have their
place in the integrated marketing information system. They are
defined as wall as the script language so as the tasks of IMIS. In
this report we have presented a few basic variants of the
interaction, which reflect the specific features IMIS.

Keywords: Data Warehouse, Data Mining, OLAP, architecture
of information system.

І. INTRODUCTION:
The report presents different approaches of the interaction of the

information technologies, which now have their place in the
integrated marketing information system. The script language and the
tasks of Integrated Marketing Information System (IMIS) define
them.

In the process of analysis the main objects and their relations are
defined. We explain the reflecting behavior on the main objects.
Diagrams of the interaction objects are developed. The
determination of the objects and scenarios is connected to
information technologies and consumer services.

The specialists, participating in the creation of IMIS, have their
place and role in process of the designing and making the
information systems. IMIS creates the balance between information
necessities and needs on one side and information technologies and
necessities on the other side. If the information technologies are not
adapted to the condition of the company, they will be inefficient and
the money than have been put for their introduction are of no use. On
other side Data warehouse (DW), Data Mining (DM) and OLAP
(Online Analytical Processing) might be based on these data, thus
creating seriously problems for the information security.

ІІ. THE SOURCES OF INFORMATION FOR MARKETING
INFORMATION SYSTEM

To comply with the requirements of the users concerning the
preparation and the decision making, IMIS must give information
from different sources - an operative system, geodemographics
systems and historical data from the system from past reporting
period. They should support high quality of data in order to give
support for the purpose of making decisions and using the possibility
of online analysis. The extraction, transformation and consolidation
of the data from operative systems require much time and resources.
Creating the multi-objective, consolidated and spreader over the
territory of the corporation information archives requires
coordination of the different data models. Also the data from the
operative systems have to be standardized in order to make them
stable.

In IMIS the technology DW is used. The obvious advantage of
the DW is the quality of the data – it is prematurely “filtered” (the
unnecessary and doubled information is removed); it is complete,
because it consists of the whole available data from the operative
systems of the external sources – GDIS and the succeeded systems;
DW is constantly updating; it consists of details and summarized
data, which is a good base for study and analysis and shortens the
time for their conduct; DW is consolidated over a single star –
scheme; it is integrated in a common information data base of IMIS;
DW is available on-line for all users.

1Veselina Iv.Nedeva, Assist.Prof.Ph.D., Technical college –
Yambol, Gr.Ignatiev Str. 38, Yambol 8600, BULGARIA,

e-mail: vnedeva@tk.uni-sz.bg

ІІІ. THE ARCHITECTURE OF MARKETING INFORMATION
SYSTEM

The architecture and technology that evolved to answer this
demand in IMIS was client/server, in the guise of a two-tiered
approach. By replacing the file server with a true database server, the
network could respond to client requests with just the answer to a
query against a relational DBMS. One benefit to this approach, then,
is to significantly reduce network traffic. Also, with a real DBMS,
true multi-user updating is now easily available to users on the PC
LAN.

А. 2-tier architecture
 In a 2-tier client/server architecture, SQL are typically used to

communicate between the client and server. The server is likely to
have support for stored procedures and triggers. These mean that the
server can be programmed to implement business rules that are better
suited to run on the server than the client, resulting in a much more
efficient overall system. 2-tiered client/server approach is a good and
economical solution for certain classes of problems.

The 2-tiered client/server architecture has proven to be very
effective in solving workgroup problems. "Workgroup", as used
here, is loosely defined as a dozen to 100 people interacting on a
LAN. For bigger, enterprise-class problems and/or applications that
are distributed over a WAN, use of this 2-tier approach has generated
some problems.

What typically happens with client/server in large enterprise
environments is that the performance of a 2-tier architecture
deteriorates as the number of on-line users increases. If something
happens to the connection, the client must go through a session
reinitiating process. With 50 clients and today's typical PC hardware,
this is no problem. When one has 2,000 clients on a single server,
however, the resulting performance isn't likely to be satisfactory.

The data language used to implement server procedures in SQL
server type data base management systems is proprietary to each
vendor. Oracle, Sybase, Informix and IBM, for example, have
implemented different language extensions for these functions.
Proprietary approaches are fine from a performance point of view,
but are a disadvantage for users who wish to maintain flexibility and
choice in which DBMS is used with their applications.

Another problem with the 2-tiered approach is that current
implementations provide no flexibility in "after the fact partitioning".
Once an application is developed it isn't easy to move some of the
program functionality from one server to another. This would require
manually regenerating procedural code. In some of the newer 3-
tiered approaches to be discussed below, tools offer the capability to
"drag and drop" application code modules onto different computers.

The response to limitations in the 2-tier architecture has been to
add a third, middle tier, between the input/output device (PC on your
desktop) and the DBMS server. This middle layer can perform a
number of different functions - queuing, application execution,
database staging and so forth. The use of client/server technology
with such a middle layer has been shown to offer considerably more
performance and flexibility than a 2-tier approach.

Just to illustrate one advantage of a middle layer, if that middle
tier can provide queuing, the synchronous process of the 2-tier
approach becomes asynchronous. In other words, the client can
deliver its request to the middle layer, disengage and be assured that
a proper response will be forthcoming at a later time. In addition, the
middle layer adds scheduling and prioritization for the work in

284

process. The use of an architecture with such a middle layer is called
"3-tier" or "multi-tier".

B. 3-Tier With a TP Monitor
The client connects to the TP monitor (transaction processing

monitor) instead of the database server. The transaction is accepted
by the monitor, which queues it and then takes responsibility for
managing it to correct completion.

On-line access to mainframes was available through one of two
metaphors – time-sharing or transaction processing (OLTP). Time-
sharing was used for program development and the computer's
resources were allocated with a simple scheduling algorithm like
round robin. OLTP scheduling was more sophisticated and priority
driven.

TP monitors (TP Heavy) have staged a comeback because their
queuing engines provide a funnelling effect, reducing the number of
threads a DBMS server needs to maintain. The client connects with
the monitor, which accepts the message and queues it for processing
against the database. Once the monitor has accepted the message, the
client can be released for further processing. The synchronous
session based computing of a 2-tier architecture, then, becomes
asynchronous through the insertion of the TP monitor into the
equation. The monitor smoothes out and lowers the overhead of
accessing the database server.

Some other key services a monitor provides are: the ability to
update multiple different DBMS in a single transaction; connectivity
to a variety of data sources including flat files, non relational DBMS,
and the mainframe; the ability to attach priorities to transactions; and
robust security.

C. 3-Tier With a Messaging Server
Messaging provides still another technology to implement 3-tier

computing. Messages are processed asynchronously with the
appropriate priority level. And, like a TP monitor, a

Messaging server provides connectivity to data sources other than
RDBMS. A message is a self-contained object that carries
information about what it is, where it needs to go, and what should
happen when it reaches its destination. There are at least two parts to
every message; the header contains priority, and address and an ID
number. The body of the message contains the information being
sent, which can be anything-including text, images or transactions.

A primary difference from TP Monitors is that message server
architecture is designed around intelligence in the message itself as
opposed to a TP monitor environment, which places the system
intelligence in the monitor or the process logic of the application
server.

Messaging systems are designed for robustness. By using store
and forward logic, they provide message delivery after and around
failures. They also provide independence from the enabling
technologies such as wired or wireless or protocols. They don't
require a persistent connection between the client and server. They
are robust because message delivery can be programmed to occur
after or around failures. Because messaging systems support an
emerging wireless infrastructure, they should become popular for
supporting mobile and occasionally connected workers.

D. 3-Tier With an Application Server
When most people talk of 3-tier architectures, they mean the

approach of an application server. With this approach most of the
application's business logic is moved from the PC and into a
common, shared host server. The PC is basically used for
presentation services - not unlike the role that a terminal plays on a
mainframe. Of course, because we are talking about a real PC here, it
still has the advantages of being used for client side application
integration (via OLE or other Approach) if desired.

The approach of putting business logic on a server offer a number
of important advantages to the application designer: When less
software is on the client, there is less worry about security since the

important software is on a server in a more controlled environment.
The resulting application is more scalable with an application server
approach. With a middle application server tier it's much easier to
design the application to be DBMS- agnostic. If you want to switch
to another DBMS vendor, it's more achievable with reasonable effort
with a single multithreaded application than with thousands of
applications on PC's.

E. 3-Tier With an Object DBMS
A variation on this theme of application server is the idea of using

an object DBMS (ODBMS) as the middle layer. Data in a relational
DBMS is usually stored in normalized fashion across many tables
and for access by different applications and users. This generalized
form of storage may prove inadequate (performance wise) for the
needs of any one particular application. An ODBMS can be used to
retrieve the data from the common store, assemble it for efficient
usage by your application, and provide a persistent store for that data
as long as your application might need it.

 Since extended data types like video or voice are not typically
supported in today's RDBMS, those data types might also be stored
in the ODBMS, which could then associate the appropriate
multimedia data with the data retrieved from the RDBMS.

F. Distributed Components & the 3-Tier Architecture
 This brings us to distributed object computing and components.

Many software specialists are predicting a software future with the
creation of application systems through assembly of software
components. That kind of software approach is available today in a
few proprietary object environments. The emergence of a broad
based industry for component-based software will require the prior
emergence of industry standards for interchangeable parts.

 The distributed object implementation of client/server computing
is going to change the way applications are built.

 There should be some very interesting advantages to observe. If
we needed fault tolerant computing, we could implement copies of
objects onto multiple servers. That way if any were down, it would
be possible to go to another site for service. With distributed objects
being self contained and executable (all data and procedures present)
it will be possible for a systems administrator to tune the
performance of the network by moving those objects from
overloaded hardware to under utilized computers.

Distributed object architecture should also offer other benefits for
application developers. The same interface will be used for building
a desktop, single location application or a fully distributed
application. The application can be developed and tested locally and
you'll know that it will work fine when it's distributed – you depend
on the known services of an object request broker for distribution.

Since the application developer is dealing with an object request
broker for transmission services, technical issues like queuing,
timing and protocols aren't an issue for the application developer.

G. Data Warehouse & 3-Tier
A 3-tier architecture is also useful for data mining or warehouse

types of applications. These applications are characterized by
unanticipated browsing of historical data. The databases supporting
this type of application can sometimes be huge (up to a few terabytes
-10(12) bytes) and have to be structured properly for adequate
performance (a few second turnaround).

Data mining and decision support applications typically need
response times of a few seconds. If the system can't provide that kind
of performance, the thought process of the human analyst is
disrupted and the overall purpose of the system is foiled. A
production database established for multiple users isn't typically in a
form that can support ad-hoc inquiries. IT systems and operations
managers usually don't want access to those tables to be on the
mainframe.

285

 Often this server is called OLAP - on-line analytical processor. In
other circumstances this server can be a symmetric or massively
parallel processor running an RDBMS.

IV. THE INTERACTION OF THE WEB TECHNOLOGIES
There are a number of technologies for data transformation and

filtering techniques, which comply with these requirements. They
examine the data preparation for DW while maintaining the quality
and minimizing the risk during the process. The complexity of
extracting, transforming and integrating of the data depends of the
number and the variety of the sources. The process of extracting and
integrating is almost impossible to be conducted with the traditional
methods, because of the large amount of resources and the complex
multi-step processing.

The connection between the user and DW is done by Meta-data.
The meta-data has special status of meta-class, which does not posses
other class or object in the system. Once we have finally transferred
the data to the DW, then we must have metadata, including:

− DBMS system tables
− Partition settings
− Indexes
− Disk striping specifications
− Processing hints
− DBMS-level security privileges and grants
− View definitions
− Stored procedures and SQL administrative scripts

The data in these dimensions, called measurable, are in most cases
aggregated. Detailed ‘raw’ data are used for the analysis needed by
the marketing specialists. Because of this both non-aggregated data

and different summarized level data (like that used for OLAP
analysis) are stored in the repository of the DW.

The information system has a user-friendly interface, because the
users examine the DW data using browsers. This way most of the
data is very easy integrated and provided in any place in the Internet.
By the same token the moving in the Web ensures independent
platform mechanism for remote users, group application and
consumer services. In this case the server’s task is to build the
processes that on one side use HTML and HTTP and on other side
communicate with OLAP applications and DB server. The Web
server controls the communications between browsers and
applications or the DB server. In this process the following server
options are used: CGI script, API Web server, API application and
API DW. On the client side – combination of HTML, Java applets,
ActiveX controls, Java Scripts and VBScripts and interface (Fig.1).

OLAP is working in this mix through its installation in the net as
an application server. The application server can be reached by any
client application, including that spread by web browser. By this
means the developer can use the ‘best fitting’ technology for every
part of the program of the widespread Web-based applications.

From the browser (Fig.2) the application components
communicate directly to the application server without the use of the
web server. Protocols like Distributed Component Object Model
(DCOM, formerly Network OLE), Distributed System Object Model
(DSOM), or Common Object Request Broker Architecture
(CORBA) are used for finishing the communication. In such a way
the productivity is increased and better functionality and security are
ensured.

The necessity for providing information through the browsers is
the basic philosophy of OLAP and Web application. We can
conclude that this process requires HTTP access to the MDB server
and the Data Mining server. The possibilities of data analysis are
very important for the users of IMIS. Different levels of the OLAP
reports, ranging over a large number of statistic’s reports with
dynamic dimensions and drilling down the reports through the data.

The interface provided by the standard HTML presents plain text
and stability features. The user must make several selections of two

Browser
HTML
Java
applets
ActiveX
controls

Java Script
VBScript

Web application
 Server

CGI API

OLAP
Server

Data
Mining
Server

Data
Warehouse

Server

I

II

III

Fig.1. Approach to access uses Web Application server in 3-Tier
architecture.

Browser
HTML
Java applets
ActiveX
controls

Java Script
VBScript

Web
Server

OLAP
Server

Data
Mining
Server

Data
Warehouse

Server

I

II

Fig.2. Approach to communicate directly to the application server
without the use of the web server in 2-Tier architecture.

286

or three dimensions that are represented data. Only after that the user
can watch the rotation after a selection.

Some product and time position changes can be made after which
the user must wait for the updated report.

The approaches for granting access to the OLAP function in the
Web can be presented in three categories:

− Static HTML reports, made in packet mode;
− HTML data patterns on-the-fly;

Java and ActiveX components, supported by the browsers.
The first approach uses preliminary lists for extracting OLAP

data in packet mode, making static HTML reports using HTML
templates. The templates are prepared in such a way that they can be
used for all reports, no matter of their content. Then the reports are
being controlled and sent to the browsers by Web server. The static
reports are very convenient, fast and easy to transport to the browser.
The disadvantage of the static reports is that they are not allowed to
interact with DW data during the process. Some static reports
simulate research of dimensions by navigation through the reports. In
the browser list field a number of a report could be assigned that
links it to the data using a hypertext.

In the ‘on-the-fly approach’ templates of the reports and the
metadata are created in the browser. These metadata show the
browser, which data are to be loaded in a HTML file, before sending
them to the browser. There are two formats of metadata on the server
– in the application tags and in the HTML templates. An alternative
is storing them in the DB field in binary format. There is a possibility
of another format for storing the metadata. Using its own HTML
tags, the report presents the metadata already existing in the HTML
file.

HTML also exists in two formats on the server. If off-the-shelf
educator is used for creating templates they exist as HTML files on
the server. By single user click on the name the report, both the
HTML template and the data from the report are joined and sent as
HTML reply to browser.

Web toolkits can also be used for making and storing metadata
models in a binary format. In this case both the reports and the
templates can be made using on-the-fly Web server processes. Web
maintenance toolkit allows designing and formatting the report’s
pages. The obtained information is stored in a Web DB. Using this
information it makes HTML templates, joins the data in a single
report and presents it in the browser.

Regardless of the way the templates and reports are stored on the
Web server, the server obtains the information, which is based on the
code of the report sent by the browser. This information is merged
with the template and all packets are sent to the browser as a HTML
response. The default report offers several levels of OLAP functions.
If the user is in dialog with an interactive report mode, user’s code is
sent with the rest of the information to the Web server. The
application server starts a program that extracts and sends data to the
browser. The alternative is if the code exists as values in the hidden
HTML control of HTML file. Using this kind of project the program
on the Web server identifies the user by reading the value of the user
code as a control. Using this code and other information from the
browser’s session, the server downloads and formats the necessary
MDB information and directs it towards the browsers.

Depending on the way the web server’s applications are built the
project can be used for multiple computer platforms. The CGI
specification is mobile, but most servers don’t use API.

The Java and ActiveX approaches use Java applets and ActiveX
controls in order to minimize the communication between the
browser and the web server and to improve the interface. There are
two methods for their usage. In the first, the web server uses binary
file with data from the reports and interface’s controls are sent to the
browser with an HTML files together. Using the client, the
characteristics and the requirements of the control show the name of
the corresponding data file to the browser. In this project the

components provide functionality using deepening the data and
changing the common format with “tricky” interface – with no need
of communication with the server. Also, since the data are
transferred in binary format between the client and the server, this
method is more secure.

In the second method the interface’s components communicate
directly with the browser, transferring data to the user as result of a
search. The interface components download the results from the
server using HTTP stream. When the components present the result
to the server, it makes selection and moves the data towards the
object for visualization. This method has advantages similar to the
ones of the first method. Nonetheless, in order to achieve the same
level of security as for the first method HTTP protocols should be
used. This method has its disadvantages as well - the JAVA work
execution is faster, but it is not as easy transferred as HTML.

Generation of reports can be applied, based on browsers,
presenting WEB based applications; mixing other web protocols with
HTTP for direct communication with the same server process, used
for the usual client/server applications. These network transport
protocols can be used with HTTP for improvement in the
communication characteristics. These reports include DSOM and
DCOM, both based on CORBA. This design can improve the
customer’s experience, when browser is used and the abilities for
growth, in order to make the systems usable in multiple
environments.

V. CONCLUSIONS
In the development of the Web based marketing information

system several conclusions can be drawn:
The applications directed to information adjust better to the web

and obtain more advantages from their architecture.
The information systems that present the information use multiple

formats and user friendly.
Using a browser for adjustment to the environment, the

applications increase with a little bit their intensity, but this way
difficulty for the users and the developers are created. The users need
to administer additional software on the web server and the users
obtain fewer possibilities from the interface if HTML is used.

REFERENCES:
1. Inmon W.H., Building The Data Warehouse (Second Edition). - NY,

NY: John Wiley, 1993
2. Kimball, Ralph, "The Data Warehouse Toolkit: Practical Techniques

for Building Dimensional Data Warehouses", John Wiley & Sons, 1996
3. Архипенков С.Я., Завьялов Б.П., Шеховцов А.И. Object-oriented

approach in the task of modeling complicated systems. Cб. Вопросы
кибернетики, серия “Моделирование сложных систем и виртуальная
реальность”, Москва, 1997

4. Асадуллаев, С., Architectural corporative Data Warehouse, PC
Week/RE'98

5. Буч, Гради, Object-oriented analysis and design, Second Edition, Пер.с
англ. под ред. И.Романовского и Ф.Андреева, Издателтьство Бином,
1998

6. Вавилов К., С.Щербина, Web-integration of the corporative systems,
http://www.profi-club.kiev.ua/, 2001

