

289

Object Oriented Web Client for Content Management
System

Ivan Petković1, Milena Stanković2

Abstract – Data redundancy is usual on the client side of the
contemporary Web applications. Eliminating the redundancy
can significantly improve Web site performance and
maintenance. For that purpose, we propose a new efficient
method which eliminates redundancy on the client side.

Keywords - object oriented, client side, content management
system

I. INTRODUCTION

Managing content has always been one of the primary
needs for using the computer. At the earlier stages of the
Internet evolution, Web sites contained primarily static
content. Another problem was lack of separation between
presentation and actual content. This lead to the fact that only
people who knew the actual code implementation of the Web
site could change the content. Now days, as technology
advanced, both the types of content and the way people
manage and use it have greatly changed. New content types
such as continuous multimedia streams have become
commonplace due to the constantly improving storage,
encoding, and networking technologies. This combination has
allowed users to access and share multimedia content in both
local and remote area networks with the network itself acting
as a huge data repository [1]. Two issues became very
important: how to efficiently find and use Web content, and
how to produce and make them accessible to users. Solution
to the first issue is to design a good Web client interface, and
for the second issue is to make a content management system.

In section II we will discuss about the needs for content
management systems, and afterwards, in section III, we will
describe the Web content lifecycle in. Section IV will explain
the architecture of the general-purpose content management
system, and section V will be more specific about the client
side of the content management system. In section VI we will
describe proposed Web client.12

1 Ivan Petković is with the Faculty of Electronic Engineering,
Beogradska 14, 18000 Niš, Yugoslavia, E-mail:
ivanp@elfak.ni.ac.yu

2 Milena Stanković is with the Faculty of Electronic Engineering,
Beogradska 14, 18000 Niš, Yugoslavia, E-mail:
mstankovic@elfak.ni.ac.yu

II. NEEDS FOR CONTENT MANAGEMENT
SYSTEMS

A content management system is a system used to manage
the content of a web site. It typically consists of two elements:
the content management application and the content delivery
application. First one allows the authors, to manage the
creation, modification, and removal of content from a web
site, while the other is focused on the content delivery to the
users.

The need for the content management systems (further
referred as CMS) evolved for the series of reasons, but we
should state the major ones:

- Site visitors have difficulties to find what they need
- Content must be updated often
- Content must be modified by a different people
- Content must be extracted from the various sources

(database, XML, other applications, etc.)
- Content must be available to the different types of clients

(PDA, WAP, Web of other)

There is also a set of requirements CMS should meet. Two

fundamental requirements every CMS should provide are
separating the way of presenting contents (layout) from the
actual content, and separating the site map (“where it is
stored”) from content. This enables content redeployment to
different locations and devices, with changeable “look and
feel” of the client interface. Because a large number of people
should be able to use the CMS, it must operate on a large
number of heterogeneous systems. It should also be flexible
enough to support content management policy (what content
should be obtained, how it will be integrated, and under what
circumstances should it be discarded).

III. ARCHITECTURE OF THE CMS

There are different opinions on the architecture of the
content management system, but we can define fundamental
model which can be modified according to the specific needs
(Fig. 1). This model is divided into three sections:

- client
- CMS engine
- source

We should state that the presented model is for general-

purpose CMS, not only for Web. Web content management

290

systems are more specialised since their primary focus are
Web clients. Clients represent target platforms which receive
the content. Since the client platforms can drastically differ
(e.g. cell phones, Web pages and PDF documents), content
must be specialy adapted for each of them. As we stated
earlier, this can acheived by following the "golden rule of
CMS" – separation of storage, presentation and content.

Content sources can be very different, and they can also be
distributed. Most frequently used type of source is database,
which is often used in Web content management systems.
Besides database, there are other types of sources: Web

services, structured and unstructured documents, and even
input from machines.

 In order to acheive univesal data interchange, inputs from
all the sources must be transformed (adapted) to the
standardized form. Nowdays, the most promising solution is
using XML as an open standard based on common synax and
with infinite semantics.

Our primary focus will be on Web clients and their design
and implementation using the proposed object oriented
approach.

Fig. 1 Architecture of the CMS

IV. THICK WEB CLIENT

There are two Web Client patterns used in Web
development:

- Thin, and
- Thick Web Client.

Thin client usually refers to a system that runs on a

resource-constrained machine. The client only requires a
standard web browser. All of the business logic is executed on
the server.

In principal, Thick Web Client pattern include the dynamic
of the Thin Web Client pattern plus the ability to execute all
or some parts of the business logic on the client. As with the
Thin Web Client pattern, all communication between the
client and server is done during page requests. The business
logic however, can be partially executed on the client with
scripts, controls or applets.

Page sent to a client may contain scripts, controls and
applets. They may be used simply to enhance the user
interface, or contribute to the business logic. The example of
the simple business logic is a form validation. In this case,
script checks every field in the form to prevent incompatible
input before the page is sent to the server. Scripts can also

respond to various events (user interactions and browser
events), which gives them ability to define the behavior of the
user interface (page).

Sometimes, page contains Java Applets or ActiveX
controls. These controls and applets can work independently
of any scripts in the page, but can also communicate with
them (form of interdependency).

Scripts have access to the Web page content via Document
Object Model (DOM) interface [2]. This interface is a W3C
standard. At the core of the Document Object Model is a set
of interfaces that specifically handle XML documents. XML
is a flexible language that enables designers to create their
own special purpose tags. The DOM interface enables client
scripts to access XML documents through ActiveX controls or
Java Applets. The main disadvantage of using controls or
applets is requirement for the additional software to be
installed. In the past, when every browser had its own logic of
accessing page contents, thick client pattern was not popular.
The reason was that developers had to write different code for
every browser, which resulted in Web sites working only on
the most popular browser at the moment.

Today, as DOM interface standardized page contents
access, future for the thick client got brighter. Moreover,
processor power of the client machines has increased,
enabling more complicated scripts to be executed on Web
client.

291

We must state that term "rich client" as a middle layer
between thick and thin client patterns is becoming popular
lately. Its purpose is to distinquish above mentioned type of
thick client from the clients working independetly from Web
browsers – standalone applications which must be installed on
each client system.

V. PROPOSED WEB CLIENT

As World Wide Web Consortium defined several important
standards (DOM, CSS, HTML 4.0), we can say that browsers
war calmed down. These standards united browsers in some
way, defining how to write code which will run on every
browser (DOM compatible). They are also the baseline for
proposed Web client.

Current client-server communication can be presented on
the diagram on Fig. 2:

Fig. 2 Common client-server communication model

User is requesting content or a service through some form
of interaction (clicking on the link). After that, Web browser
will send a page request to the Web server. Server will gather
complete page code (layout, menus, scripts and requested
content) and send back as a complete page. Problem with this
approach is that every time new content is requested, user gets
a whole page. Very often, Web content can be only small part
of the page. That leads to conclusion that communication is
not always optimized. In case of content management
systems, with a large number of content requests, this
approach makes unnecessary extra network traffic and extra
page download time. So, how can we achieve better results?

If Web server could send back only the requested piece of
information, that would improve efficiency and decrease
network traffic [3] (see Fig. 3).

We propose an approach based on object oriented
paradigm. Object oriented thinking is most natural to human
thinking. We have developed the framework which acts like a
layer between page (HTML) and the Web server. It uses
JavaScript syntax, but has its own set of objects.

Purpose of the framework is that developers can think in
the more abstract way. Instead of thinking on the level of
HTML tags, they can think on the level of objects. To be more
specific, this framework recognizes following types of
objects:

- resources
- scripts
- contents
- modules

Fig. 3 Improved communication model

Resources are mostly static elements which are used by the

Web pages. They can be:

- multimedia files (images, video, audio, Flash, ...),
- menu objects, and
- layout objects

There are two types of menu objects (see Fig. 4):

- menu data objects,
- menu presentation objects, and
- menu controller objects.

Fig. 4 Resources hierarchy

Menu data object is a structure (most likely tree), which

contains all or most of the links to the other pages or options.
It does not define the presentation of the menu object (popup,
dropdown ...), only its structure.

Menu presentation object defines a visual appearance and
behavior of the specified menu data object. In other words, it
defines what form will menu data object take – for example
popup menu. If a page contains some type of menu (e.g.
popup menu), it can be changed to other type of menu, let's
say to dropdown menu, even in run-time by calling only one
function.

Menu controller object connects one menu data object
with one menu presentation object. Together they make MVC
(Model-View-Control) framework. Changes in one of them
will not influence other two. Also, if we want two
representations of the same menu structure, we only have to
create two menu controller objects which will be attached to
the same menu data object on the one side, and to the different
menu presentation objects on the other side.

292

Fig. 5 Model-View-Control framework

Layout object represents visual appearance of the page. It

structures the page layout by splitting it onto parts, and it
defines their behavior. Those parts (called layout components)
can be nested into other parts of the same kind. It is important
to say that implementation of the component is abstracted
using Bridge design pattern [4]. Than means developers will
not need to use tags (<DIV> or <TABLE>) to design layout,
but only to define structure by calling layout class methods.
Design and behavior of the layout object can be changed in
the run-time, simply by calling an appropriate class method.
Layout object acts like a "window" to the client – users will
experience Web site through it. Thet means we can adapt
whole CMS to every Web client only by creating one layout
object for each type of client (e.g. for PDA users, users with
high resolution displays, etc.).

Scripts define behavior and the dynamics of the Web page.
They can be client side or server side. Client side usually
defines behavior of the page (user interface and additional
layout object behavior, menu object implementations and
other). The proposed framework recommends that all client
side script code should be embedded into classes, and not as
unstructured code. We can clearly see frameworks orientation
on object models, and not on data-flow models [5]. Server
side scripts dynamically create contents and resources like
layout and menu objects.

Contents are actual data the user wants – they can be
structured documents (XML, HTML), but also a simple text.

Module is an independent or interdependent component
which can be consisted of other modules, resources, scripts
and contents. There is an analogy to the folder on the
computer file system. It can be independent in a way that it
uses only elements from itself, or can be interdependent – if
uses elements from the other modules.

VI. CONCLUSION

By implementing the proposed Web client pattern, we
achieved better performance (network traffic and download
time) obtained by decrease of the data sent back to a client.
Redundant data (data common to all or most of the pages on
the site) are not sent, but only desired content. Web client is
robust and flexible, since its every element can be changed in
the runtime. Here is the list of some possibilities that can be
achieved in the runtime:

- Content can be seamlessly loaded or changed in the

layout component
- Content can be loaded into every (not only one) layout

component.
- Layout design can be changed (in runtime)
- Menu presentation (type) can be changed (in runtime)
- Menu structure can be changed (adding, editing and

removing menu items).

Our future work will be based on further integration of the

object oriented paradigm into both CMS and Web client, in
order to achieve more flexible platform. That would provide
advantages like online graphic and layout design and
"skinable" Web sites (sites with more layouts which can be
switched by one click). These advantages would also enable
CMS personalization, modern and very important concept in
the process of CMS development.

REFERENCES

[1] C. D. Cranor, R. Ethington, A. Sehgaly, D. Shur, C.
Sreenanz and J.E. van der Merwe, Design and
Implementation of a Distributed Content Management
System, Proceedings of the ACM International

[2] World Wide Beb Consortium, Document Object Model
Level 3, http:/ /www.w3.org/TR/2004/REC-DOM-Level-
3-Val-20040127/

[3] I. Petković: Component Development of the Client Side of
the Web Applications; Proceedings of 6th International
Conference on Telecommunications in Modern Satellite,
Cable and Broadcasting Services, Telsiks 2003, October
2003

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design
Patterns, Addison-Wesley, 1997

[5] I. Sommervielle, Software Engineering, Sixth Edition,
Addison-Wesley, 2001

