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Fast Method for Asymmetrical Load-Flow Solution in 
Sequence Domain  

Ljupco D. Trpezanovski1, Vladimir C. Strezoski2 and Metodija B. Atanasovski3

Abstract – In this paper a new fast method for asymmetrical 
load-flow solution in sequence domain is presented. The entire 
power system is modelled with three decoupled positive-, 
negative- and zero-sequence circuits. The proposed method is 
consisted of a system of non-linear equations which represents 
the positive- and two systems of linear equations which represent 
the negative- and zero-sequence circuits. The solution of non-
linear equations is by Newton-Raphson procedure and solution 
of linear systems of equations is by Gauss’s method. 
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I. INTRODUCTION 

The load-flow studies are the most frequent calculations in 
the power system analysis. The steady state symmetrical load-
flows studies (SLF) are performed in the more efficient and 
comfortable sequence domain instead of in the phase domain. 
Usually, power system states deviate more or less from the 
symmetrical states, therefore symmetrical states are only 
approximations of the actual states of three-phase power 
systems. Always, the three-phase electrical power system 
states are asymmetrical. The presence of long unbalanced 
(untransposed) transmission lines and asymmetrical or single-
phase loads (as induction furnaces and electrical railways 
substations) cause: negative-sequence currents at generator 
terminals rise heating in their rotors; malfunctions of protective 
relays; zero-sequence currents increase greatly the effect of 
inductive coupling between parallel transmission lines; higher 
power system loss etc. Because of these reasons, for more precise 
analysis of three-phase power system states, the asymmetrical 
load-flow (ALF) analysis are required. Also, ALF calculations are 
required in the process of transmission line designing to study the 
effects of various phase arrangements, or in operating situation 
with single pole switching, etc. 

Usually, the methods for ALF solutions are in phase domain  
[1-3]. The main reasons for avoiding the sequence domain in the 
ALF methods are: (1) presence of phase shifts of the three-phase 
transformers (ideal transformers with complex turns ratios in their 
sequence circuits); (2) mutually couplings among sequence 
circuits in the points of power system unbalances and (3) 
asymmetrical phase loads, which cannot be specified in the 
sequence  domain. Applying new scaling concept [4],  unbalanced 

 
 
 
 
 
 
  

line decoupled model in sequence domain and asymmetrical 
phase loads model specified in the sequence domain [5-7],  the 
entire power system can be modeled with three decoupled 
positive, negative and zero-sequence circuits. For proper 
definition of the ALF methods in sequence domain an enhanced 
bus classification is proposed in [8], [9]. 

II. ENHANCED BUS CLASSIFICATION 

Usual bus classifications are performed in accordance with 
the specification of values of quantities associated with power 
system buses. Twelve real-valued quantities are associated 
with each three-phase bus: three pairs of voltage magnitudes 
and angles, as well as three pairs of active and reactive 
injected powers. Three pairs of active and reactive power 
balance equations, for each three-phase bus, describe these 
quantities. These equations are extended with relations 
representing control laws associated with buses in which the 
three-phase active powers and reactive powers or voltage 
magnitudes are controlled. To provide a correct treatment of 
reactive power limits enforcement at the generators, as well as 
to simplify the ALF method, the standard three types buses 
classification is enhanced to a new four types buses 
classification by introducing a new or ΣΣQP  type of buses 
(Table I). The new classification is independent of the domain  
which the ALF problem is stated in: 

1. VPΣ  bus is a bus in which the value of three-phase 
injected active power ( ΣP ) and the control law of the 
automatic voltage regulator (AVR) are specified. Values of 
three pairs of magnitudes and angles of voltages, as well as 
values of three pairs of injected active and reactive powers are 
unknown. Applying the synthesizing procedure [8], [9], this bus 
is suppressed in the high voltage bus of the step-up transformer.  

2. Vθ bus (slack bus) is a bus in which the angle of a 
voltage and the control law of the generator AVR are 
specified. Values of three magnitudes and two angles of 
voltages and values of three pairs of injected active and 
reactive powers are unknown. Applying the synthesizing 
procedure, this bus is suppressed in the high voltage bus of the 
step-up transformer. 

3. ΣΣQP  bus is a bus in which values of three-phase injected 
active and reactive powers (sums of phase powers ΣP and ΣQ ) 
are specified. Values of three pairs of magnitudes and angles 
of voltages and values of three pairs of injected active and 
reactive powers are unknown. It is newly introduced type of 
buses, which is necessary to provide the correct treatment of 
Q limits enforcement at VPΣ buses. Also, this type of bus is 
suppressed in the high voltage bus of the step-up transformer. 
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4. PQ  bus is a standard type of buses in which values of 

three pairs of injected active and reactive powers are 
specified. Values of three pairs of magnitudes and angles of 
voltages are unknown.  

Three complex or six real equations, representing the 
current or power balances for each three-phase bus, are on 
disposal to solve the unknown values of quantities presented 
in Table 1. Six unknown values are fully covered by these 
equations for PQ  buses only. Twelve unknown values  
associated with other buses are covered by eight equations 
only−six previously noted balanced equations and two 
relations corresponding to specified (controlled) values. Thus 
four equations have to be established to cover the remaining 
four unknown values. This problem is solved by applying new 
scaling concept [4] and synthesizing procedure [8], [9]. With 
the new scaling concept the transformer complex turn ratios 
are eliminated from the power system sequence circuits. The 
synthesizing procedure enables to suppress the equivalent 
parameters (of the generator and it’s corresponding step-up 
transformer) of the negative and zero-sequence circuits in the 
transmission network. This suppression enables zero-valued 
injected currents and powers in the corresponding negative 
and zero-sequence nodes. Now, the issue of shortage of four 
equations corresponding to each VPΣ , Vθ  and ΣΣQP  bus in 
the sequence domain can be solved. 

III. POWER SYSTEM SEQUENCE CIRCUITS 
DECOUPLING  

When the power system elements (balanced or unbalanced) 
are modeled in phase domain there are mutual inductive and 
capacitive couplings between phases. But, if balanced 
elements (practically all generators, transformers and 
transposed lines) are modeled in sequence domain all mutual 
couplings between phases and sequence circuits are 
eliminated [7].  

When the unbalanced lines are considered in sequence 
domain, there are couplings among positive-, negative- and 
zero-sequence and the line model cannot be presented with 
lumped-π decoupled sequence circuits. In this case, 6x6 node- 
admittance matrix representatives of the line is full with non-
zero elements, just like the 6x6 node-admittance matrix in the 
phase domain. Thus, the power system model in sequence 
domain cannot be presented with three linear decoupled 
sequence circuits. The points of mutually coupling among 
positive-, negative- and zero-sequence power system circuits 

are just these unbalanced lines. Inductive and capacitive 
mutual couplings among positive-, negative- and zero-
sequence are expressed with non-zero off-diagonal elements 
in 6x6 node admittance matrix. Instead of mutually 
admittances, the couplings can be expressed by compensation 
current sources [5], [7]. Thus, the unbalanced line model can 
be presented with three decoupled sequence circuits as it is 
depicted in Fig. 1a-c. The mutual couplings are replaced by 
corresponding controlled sources – current sources.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The current controlled sources in series and shunt branches 
of each sequence lumped-π circuit include the coupling 
influences from the other sequences. The self-admittances and 
the current sources currents in series and shunt branches of 
any sequence from the Fig. 1 can be calculated very easy as it 
is shown in [7], [9]. 
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Fig. 1. Unbalanced line decoupled positive- (a), negative- (b) and 
zero-sequence circuit (c) in absolute value domain. 

TABLE I. THE ENHANCED BUS CLASSIFICATION FOR THE ALF PROBLEM (c.l. – CONTROL LAW, PHASE DOMAIN abc, SEQUENCE DOMAIN dio). 

PΣV θV PΣQΣ PQ  

BUS TYPE abc dio abc dio abc dio abc dio 
SPECIFIED 
VALUES 

PΣ 
c.l.  of  AVR 

PΣ 
c.l.  of  AVR 

θa 
c.l.  of  AVR 

θ d 
c.l.  of  AVR 

PΣ 
QΣ 

PΣ 
QΣ 

Pa, Pb, Pc 
Qa, Qb, Qc 

P d, P i, P o 
Q d, Q i, Q o 

 
UNKNOWN 

VALUES 

Ua, Ub, Uc 
θa, θb, θc 
Pa, Pb, Pc 
Qa, Qb, Qc 

U d, U i, U o 
θ d, θ i, θ o 

P d, P i, P o 
Q d, Q i, Q o 

Ua, Ub, Uc 
     θb, θc 
Pa, Pb, Pc 
Qa, Qb, Qc 

U d, U i, U o 
     θ i, θ o 

P d, P i, P o 
Q d, Q i, Q o 

Ua, Ub, Uc 
θa, θb, θc 
Pa, Pb, Pc 
Qa, Qb, Qc 

U d, U i, U o 
θ d, θ i, θ o 

P d, P i, P o 
Q d, Q i, Q o 

Ua, Ub, Uc 
θa, θb, θc 

U d, U i, U o 
θ d, θ i, θ o 
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The injected currents in the ends k and j, of any sequence 
lumped-π circuit can be corrected by the compensation 
currents [7], [9]. These corrections enable the omit ion of the 
current sources from the sequence circuits in Fig. 1a-c and 
obtaining the final decoupled, compensated, scaled, 
unbalanced line model in sequence domain, depicted in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Applying above described unbalanced line model, new 
scaling concept, and synthesizing procedure the entire power 
system can be represented with three decoupled positive-, 
negative- and zero-sequence circuits.  

IV. FAST METHOD DEFINITION  

Each load-flow model is based on a power system linear 
model, which is stated in terms of complex voltages and 
currents. The most widely used linear power system model is 
that of the nodal voltage equation. For the power system with 
n three-phase buses, i.e. 3n phase nodes, this model in 
sequence domain (dio) says: 

dio
n

dio
n

dio
nn 131333 ××× = IUY .       (1) 

In the Eq. 1, dio
nn 33 ×Y  is node-admittance matrix of the power 

system equivalent sequence circuits. The complex voltages 
and injected currents in all power system buses are elements 
of vectors dio

n 13 ×U  and dio
n 13 ×I . They consist of sub vectors of 

dimensions 3×1, containing the sequence complex quantities. 
The node-admittance matrix is formed for a sequence circuits 
without ideal transformers with complex turn ratios. If the 
number of generators in the power system is ng, the 
application of the synthesizing procedure enables power 
system buses reduction for 2ng  buses. Now, the power system 
can be treated as a system with gnnr 2−=  buses or r3  
nodes. Therefore, the power system model given by Eq. (1) 
gets new form with reduced dimensions:  

dio
r

dio
r

dio
rr 131333 ××× = IUY .        (2) 

 Finally, if the decoupled, compensated, scaled, unbalanced 
line model in sequence domain is applied, the entire power 
system can be represented by new model with three systems 
of linear equations: 

d
rc

d
r

d
rr IUY =× ,      (3) 

i
rc

i
r

i
rr IUY =× ,          (4) 

o
rc

o
r

o
rr IUY =× .      (5) 

Each of these systems of equations represent the nodal voltage 
equations for the power system positive-, negative- and zero-
sequence decoupled circuits. The matrices of injected 
currents, corrected by compensation currents (as result of 
circuits decoupling) d

rcI , i
rcI  and o

rcI  for positive-, negative- 
and zero-sequence decoupled circuits respectively, are 
consisted of node injected complex currents. At first, the Eq. 
(3) can be conjugated and after that multiplied from the left by 
a diagonal matrix containing the complex positive-sequence 
voltages. As the result of this procedure, a new nonlinear 
system of equations representing the power system positive-
sequence is obtained: 

( ) ( ) d
rc

d
r

d
rr

d
dijr SUYU =∗∗

,, .      (6) 

In Eq. (6), matrix d
rcS  represents complex, compensated 

injected powers in the positive sequence circuit nodes [9]. 
Applying the Taylor’s procedure, the nonlinear system of 
equations given by matrix Eq. (6), can be transformed in the 
new linear system of equations. This new system is consisted 
of equations for differences between the injected specified and 
calculated powers − d

korS∆  in the power system positive-
sequence circuit nodes, represented by the Jacobian dJ  (for 
this sequence circuit) and unknown differences of voltage 
magnitudes and angles given by the matrix dX∆ : 

d
kor

dd SXJ ∆=∆ .        (7) 

or in the well known form with sub matrices: 
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Actually, the matrix Eq. (8) has the same form as the 
equations which represents the symmetrical load-flow model 
[10]. The Eqs. (8), (4) and (5) together represent the model of 
the new fast method for asymmetrical load-flow solution. 

Because for the r-th, Vθ  bus (or slack bus), the complex 
voltage is specified ( d

spr
d

spr
d

spr UU ,,, θ∠= ), the equations 
representing the power differences for this bus are not 
included in the system given by Eq. (8). 

For all g buses, type VPΣ , the three-phase injected power 
in phase domain Σ

spgP ,  are specified. This power expressed 
through sequence voltages and currents is given by equation: 

Fig. 2. Unbalanced line decoupled, compensated, scaled positive-
(a), negative- (b) and zero-sequence (c) lumped-π circuits. 
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( ) ( ) ( )[ ]∗∗∗Σ ++= o
g

o
g

i
g

i
g

d
g

d
gspg IUIUIUP Re3, , g∈{PΣV}. (9) 

 As it was mentioned above, the synthesizing procedure 
enables to account with zero injected currents in this type of 
nodes in the negative- and zero-sequence circuits ( 0=i

gI and 

0=o
gI ). Taking into account this fact, the three-phase 

injected power given by Eq. (9) can be expressed as: 

( )[ ] [ ] d
g

d
g

d
g

d
gspg PSIUP 3Re3Re3, ===

∗Σ , g∈{PΣV}.    (10) 

 From Eq. (10), the injected specified power in the buses 
type ,VPΣ  in positive-sequence circuit is calculated very easy: 

Σ== spg
d

spg
d

g PPP ,, 3
1 ,   g∈{PΣV}.     (11) 

 Also, for this type of buses, the positive-sequence voltage 
magnitude − d

spgU , , is specified. Because, the value of the 

positive-sequence voltage angle − d
spg ,θ  is unknown, there is 

only one equation (for differences between the injected 
specified and calculated active powers) in matrix Eq. (8), for 
each bus of this type. 
 If the number of the ΣΣQP  type of buses is q, then for each 
bus there are two equations (in matrix Eq. (8)) for differences 
between the injected specified and calculated three-phase 
active and reactive powers. As specified powers in the nodes 
of the positive sequence circuit is taken one third of the three-
phase active power and one third of the maximum or 
minimum possible injected reactive power (depending which 
limit of reactive power is achieved). 
 For all of p buses type PQ , there are two equations in the 
matrix Eq. (8). Because, for these buses the phase active and 
reactive powers are specified, it is necessary to express 
specified injected active power − d

sppP ,  and  reactive power − 
d

sppQ , in the nodes of the positive-sequence circuit. This 
procedure is explained in [7], [9]. 

Taking into account the above explanations, the conclusion 
is that the whole number of equations in the system given by 
Eq. (8) is gqpk ++= 22 . The solution of systems of 
equations Eq. (8), (4) and (5) is by iterative procedure.  

With the above proposed fast method, the problem of ALF 
solution is transformed in the easy solution of SLF problem 
and solution of two systems of linear equations 
representatives of negative- and zero-sequence power system 
circuits. 

V. METHOD VERIFICATION 

The fast method is tested on the entire power system of the 
Republic of Macedonia consisting of 63 buses of 400, 220 and 
110 kV  voltage  level, 53 lines, 5 interconecting  transformers 

 
 
 

and 9 equivalent generators and step-up transformers. Eight 
states (variants) are considered. The comparison of the results 
obtained by Newton−Rapson’s method for ALF in phase 
domain [1] and the proposed fast method in this paper is 
performed. The proposed fast method in sequence domain is 
very efficient and robust, because the amount of 
iterations/CPU time required for calculations and memory 
storage are significantly smaller then the Newton-Rapson’s 
method for ALF in phase domain. 

VI. CONCLUSION 

In this paper the efficient fast method for asymmetrical 
load-flow solution is given. The efficiency is achieved by 
applying several advancements as: enhanced bus 
classification, sequence circuits decoupling, new scaling 
concept and synthesizing procedure. The form of the 
decoupled positive-sequence part of the presented ALF model   
is reduced to the form of the classical SLF problem. Thus, the 
same SLF Newton−Rapson procedure can be applied inside 
the ALF solution procedure. The negative- and zero-sequence 
parts of the presented ALF model are represented by two 
systems of linear equations and solved by Gauss’s method of 
coefficient elimination. 
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