Design of Symbol Table by using
Design Patterns

Milo$ Stamenovi¢' and Suzana Stojkovi¢®

Abstract — This paper presents an object-oriented approach
in symbol table design. Symbol tables are data structures storing
data about symbolic names in the program. Symbolic names are
names of different kinds of items in the programs. Because of
that, symbol tables contain very heterogeneous structures of
data. In this solution symbol table is divided on: type table,
symbol table (storing only variable names) and function table.

Design patterns are used often in object-oriented design.
Composite, factory method and singleton patterns are used in
symbol table design presented in this paper.

Keywords — Symbol tables, compiler design, object-oriented
design, design patterns

I. INTRODUCTION

Symbol tables are data structures that are used for
identifiers storing in compile time [1],[2]. Symbol tables are
used for identifying syntax and semantics errors and warnings
within a program. Identifier in the program can be the name
of: variable, constant, type, function, etc. For different types
of tokens (that are named by identifiers), different data must
be stored in the symbol table. For example:

- for a variable - name, type, dimension (for array
variable), last value definition, last using, etc;

- for a function - name, returned type, number of formal
arguments, types of arguments, types of argument
passing, etc.

There are three basic methods manipulating with a symbol
table: method for inserting new symbol in the symbol table,
method for deleting symbol from the symbol table and symbol
lookup method (method for searching the symbol within the
symbol table). The symbol lookup method is very often used
and because of that, it must be very fast. Therefore, symbol
tables are obligatory realized as a hash tables.

It is obvious that structure of the symbol table is very
complex. Because of that, symbol table construction is one of
the most significant problem in the compiler construction.

Object-oriented approach in software design and
implementation enables reusing of the existing source and
reusing of existing the design details (known as the design
patterns [3],[4],[5]). In the last years, design patterns are often
applied in compiler construction and in the symbol table

' Milo3 Stamenovi¢ emploied in the Troxo d.0.0, Dusanova
55, 18000 Ni§, Serbia and Montenegro, e-mail:
milostam@eunet.yu.

2 Suzana Stojkovi¢ emploied in the Faculty of Electronic
Engeneering, Beogradska 14, 18000 Ni§, Serbia and
Montenegro, e-mail: suza@elfak.ni.ac.yu

design, too [6],[7]. Design patterns usage in symbol table
design for a simple script language interpreter will be shown
in this paper. The script language is very specialized, but
proposed design is general and applicable for the other
interpreters and compilers.

1. DESIGN PATTERNS

“Design pattern systematically names, explains and
evaluates an important and recurring problem in object-
oriented systems” [3]. Each pattern is defined by 4 elements:

- name (identifies the pattern),

- problem (describes when pattern is applied),

- solution (describe design elements making up the

pattern and relationships between them),

- consequences (describe results and trade-off of using

the pattern).

In the next section we will give a brief sketch of design
patterns which are used in our symbol table design.

A. Composite pattern

The Composite pattern [3], [5] models composition of
objects into tree structure. This pattern is used for
representation of part-whole hierarchies of objects when
clients should not know about difference between composite
and leaf objects. Structure of the Composite pattern is shown
on Fig. 1.

. +myltem i
Client yl ltem |*children

Simpleltem Compositeltem | g

Fig. 1 Class diagram of the Composite pattern

e -

Creator

FactoryMethod()
// \\ //
concreteProductl | - concreteCreatorl
FactoryMethod()

return new concreteProductl; ﬁ

Fig. 2 Structure of the Factory method

325

B. Factory method

The Factory method [3] (known as Virtual Constructor)
models an interface for creating an object. Derived classes
“know” which class to instantiate. Structure of the Factory
method pattern is shown on Fig. 2.

C. Singleton

The Singleton pattern [3] models a class that has exactly
one instance. The Singleton class is responsible for creating
its unique instance and contains an Instance() operation.
Clients access Singleton instance through the Instance()
operation. Structure of Singleton pattern is shown on Fig. 3.

Siingleton
$ singlelnstance : Singleton*

if (singlelnstance == 0))
] singlelnstance = new Singleton;
Instance() : Singleton* I _—— -return singlelnstance;

Fig. 3 Structure of the Singleton pattern

I1l. SCRIPT LANGUAGE CHARACTERISTICS

We have requirement to create a C++ documentation
generator. Documentation generation is based on usage of
documentation templates. Documentation templates describe
how the generated software documentation will look like.
Documentation templates are Word documents containing
certain scripts. The base problem in documentation generator
development is to realize interpreter of the scripts. The
symbol table, presented in this paper, is a part of that
interpreter. Characteristics of the script language important for
symbol table design are:

e The script language has limited number of types build-in
the language definition. It is not possible to define any
new type. There are three kinds of types: simple types
(integer, string, image, float), structures (sset of data of
different types) and collections (set of data of the same
type).

e The script language does not contain declarations of script
variables. Thus, types of variables are determined by the
context of their using.

e The script language has limited number of functions
build-in the language definition, too. Those functions
generate data about C++ project that can be integrated in
generated documentation.

e The script language has for each iteration statement,.
Therefore we have to involve a special type — collection
type.

In the following text, we will emphasize some main
components of the specific script interpreter and recommend
our approach in symbol table design.

I\VV. SYMBOL TABLE DESIGN

Symbol table in general, has to store type names, function
names and variable names. As it was mentioned before, our
implementation of script language has limited number of

types and functions included in definition of the language.
Type names never appear in the scripts. New functions cannot
be defined within the scripts. Symbol table is divided into
three tables: type table, symbol table and function table
because set of data describing the functions, types and
variables are very different. Since, all types and functions are
well known in design phase, type table and function table are
initialized and filled before interpreting starts.

Architecture of our script language interpreter is shown on
Fig. 4. Every table is represented as class package. Every
package has one main class that is designed like singleton
class. Thus, type table has TypeTable singleton class, symbol
table has SymbolTable singleton class and function table has
FunctionTable singleton class.

SymbolTable FunctionTable
— ~>
. -
N)z
TypeTable
Fig. 4 Architecture Overview
A. Type table

A limited number of types allow us to define data
structures for all types that will be used in the script language.
Data structure including all script language types definitions is
called Type table. Basic demand for type table is to allow
maintainability and extensibility. We will use some
combination of design patterns to accomplish these
requirements. Class diagram of the Type table is shown on
Fig. 5.

We define generic type with the Type class and all other
kinds of types as subclasses of the Type class. The following
classes are derived from Type:

e SimpleType
e StructureType
e CollectionType

TypeTable

singlelnstance : static TypeTable* Type
-ypes Tename
LaN
instance() : TypeTable* 0.n
findType(type : CString) : const Type* 1 *createValue() +Hields

initialize() : bool

+eleMmentType 1.n

CollectionType Structure Type

‘ SimpleType

Fig. 5 Type table class diagram

The SimpleType class encapsulates simple types like
integer, string, imagee, float, etc. StructureType has various
fields, and every field has its own type. For example, some
instance of StructureType can have one field of an integer
type, one field of any StructureType and one field of any
CollectionType. The CollectionType class represents
collection of elements where all elements have the same type.

326

We want to describe this types hierarchy and treat all objects
uniformly. Also this types structure could be very complex.
This consideration leads us to composite design pattern as
obvious choice. The types objects are used by one very
complex object, called ScriptEngine. Composite design
pattern separates ScriptEngine class from types hierarchy,
which is liable for changes.

TypeTable is a singleton class and its findType method is
used to find type in hash table where the key is a function of
type name. Certain symbol can be created when its type is
determinated. First, we have to get type object by type name,
then we create value for this type and, finally, create symbol
with this value

B. Symbol table

The Symbol table, in our interpreter, contains only data
about variables in the scripts. The Symbol table includes the
following classes:

e SymbolTable class. The SymbolTable class is
implemented as hash table of symbol objects. As it was
mentioned before, this class is designed like a singleton
class.

e Symbol class. The Symbol class represents a variable in
the scripts. Symbol has the following attributes
describing variable in a program: name, lastUsed,
defined, DTName (name of documentation template in
which variable is defined) and value. Atribut value is
necessary because Symbol table is used in interpreter, i.
e. Symbol table exists in a run-time.

e Values class hierarchy. This hierarchy includes Value
class and Value subclasses (SimpleValue, StructureValue
and CollectionValue). It is designed by using composite
pattern, too. When we expand this composite object
structure we will get tree structure with SimpleValue-s as
leafs. Only SimpleValue contains data in the value
attribute. The value attribute is implemented as string,
because all simple types integer, date, float etc could be
represented as strings.

Symbol
(from SymbolTable)
&ysymbolName : CString
~IastUsed runsigned long
#DTName : CString

SymbolTable
#ysinglelnstance : static SymbolTable*

%instance()

*addSymbol() +SymbOIATaY ydefined
“deleteSymbol() o.n

*getSymbol() *Symbol()
‘deletelnstance() #Has hValue()

%deleteSymbolsDefinedinDT()

*changeValue()
#*isAllUsed()

1 %createValue()

p
*getType()

+valu 1

— e Value +fields

- + %getTypeName() : CString [<—

from TypeTabl

(from TypeTable)| 1 *Value(t : Type*) nT

| % | 0

SimpleValue CollectionValue StructureValue
#value : CString

Fig. 6 Symbol table class diagram

SymbolTable structures are shown on the Symbol table
class diagram (see Fig. 6). It is important to note a connection
between Value and Type. Value object always *“has
knowledge” of its own type by using this connection. Also,

the StructureValue knows types of its fields via the
StructureType object. Similarly, the CollectionValue knows
type of its elements via the CollectionType object.

Imagine that Type subclasses are added on the Symbol
table class diagram. The result diagram would contain parallel
class hierarchies connected with type relationship. This
relationship is realized with createValue method and we can
notice similarity between this Value-Type structures and
FactoryMethod (Creator-Product) design pattern.
FactoryMethod design pattern is useful when we want to
delegate creation responsibility to derived classes. It means
that, for example, only StructureType class knows how to
create its value (StructureValue).

Fig. 7 shows scenario intending to explain process of
creating values. This scenario covers interpreting of a script
with a function call containing certain StructureType script
variable. First, ScriptEngine gets function from FunctionTable
by function name in order to get type of out function
argument. Second, new empty symbol has to be added in
SymbolTable. Third, StructureVValue object has to be created
with all its fields. Finally, StructureValue object has to be
filled in with real data by using the Function object. Process
of creating StructureValue object have to be explained with
more details. Creating of StructureValue object implies
creating of all its fields. According to that, StructureValue
object gets type for each field from its StructureType object
and requires from these types to create value by using factory
method createValue.

Creating value does not mean coping real data to symbol.
Symbol is added in symbol table when declaration of some
variable is detected, but there is possibility that declared
variable would not be used in the following script. For
example, CollectionValue object could contain many
elements, copying all elements can be an expensive operation,
but there is not guaranty that all elements would be used.
Therefore, current design could be improved by using virtual
proxy technique. It means that only reference to data source is
placed in CollectionValue object so CollectionValue object is
used like proxy to real data source. Thus, when parsed script
requires value of some CollectionValue element, real data will
be obtained via proxy.

C. Function table

It was mentioned before, that we had limited number of
functions build-in the language definition. Therefore, we can
gather definition of all functions in the FunctionTable
structures.

FunctionTable class is designed like Singleton class,
because there must be only one instance of the FunctionTable.
Every function is identified by its name (arguments are not
considered like they do many object oriented languages). As it
is shown on Fig. 7, when the ScriptEngine detects a function
in script it starts creating value based on type of the function
out argument. It means that symbol with empty Value object
is created. The Value object has to be filled in with
information extracted from project for which documentation
will be generated. For this purpose, ScriptEngine gets function
by its name from FunctionTable and calls the function (call

327

engine ; funcTable : someFunction: || symbolTable :
Scri Qt@lne FunctionTable Function SymbolTable

: Project H someSymbol : H someStrType : H someStrValue :

someSimpleType : H someSimpleValue : ‘

StrumureTM StructureValue SimpleType SimpleValue

InterpretScript(someScriptFunction)

getHunction(“functionNeme")
>

getArgument Type(0)

addSymbol("someSymbol”, symbolType)

5

cateValue(symbol T

createValue()

call(argList)

called by function pointer

for each field ﬁ o

StructureValue(thig

createValue()

SimpleValue(this)
 E—

T 11 ey]

alue...)

for each field A
L

—{

Fig.7 Scenario of interpreting certain script

member of Function class) to fill Value object. Method call is
generic because it is used for every symbol. During the
initialization of FunctionTable, implementation property of
Function class is set. implementation property represents
function pointer on real function. Thus, ScriptEngine calls real
function via Function object, i.e.,, via implementation

property.

FunctionTable -
Function

(from FunctionTable)
gname : CString
Hunctions| Lgiimplementation : FunctionPointer

%snglelnslance : static FunctionTable*
Ekinitialized : bool 0.

Winstance()
SkgetFunction()

@call(arguments : vector<Value*> &) : bool

0..n i +args

Argument
(from Function)
&inORout : bool

deletelnstance()
Sinitialize ()

Type +argType
(from TypeTable)

Fig. 8 Function table class diagram

Finally, class Argument defines function parameter or
argument. Argument maintains a pointer to Type which is
used by ScriptEngine for detecting incorrect parameters.

V. CONCLUSION

In this paper we have presented an object-oriented
approach in development of a script language interpreter. We
were focused on symbol table design. The Symbol table is the
most important part of language interpreters and compilers.
Our basic idea was to create a symbol table independent of
script engine implementation and applicable in various
interpreters. Therefore, we have used design patterns.

In the presented design, symbol table was divided in three
tables: type table, symbol table and function table. Each table
has a main class designed as singleton class. For designing of
types and variables values, composite pattern was used. It
enables that other parts of system do not have to know about
differences between types and appropriate values. It provides
easy adding new types in the language, or replacing existing

type. For creating variable value, the factory method pattern
was used.

Usage of UML language and design patterns increased
speed and quality of presented design. It enables vary easy
extansion of existing script language and application of
implemented symbol table in other interpreters or compilers.

REFERENCES

[11 A. V. Aho, R. Sethi,
Principles, Techniques and Tools,
1986.

[2] D. Grune, H. E. Bal, C. J. H. Jacobs, K. G. Langendeon,
Modern Compiler Desing, New York, John Wiley &
Sons, 2002.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Element of Reusable Object-Oriented Software,
Addition-Wesely, 1995.

[4] D. Milicev, M. Zari¢, N. Pirotanac, Objektno
orijentisano modelovanje na jeziku UML: skripta sa
praktikumom, Beograd, Mikro knjiga, 2001.

J. D. Ullman, Compilers -
Addition-Wesely,

[5] R. Riechle, “Composite Design Patterns”, Proceedings of
the 12th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications , pp.
218-228, Atlanta, Georgia, United States, 1997.

[6] J. F. Power, B. A. Malloy, “Symbol Table Construction
and Name Lookup in 1ISO C++”, Proceedings of the 37"
Conference on Technology of Object-Oriented
Languages and Systems, pp. 57-69, Sydney, Australia,
2000.

[71 M. Hind, A. Pioli, “Traveling Through Dakota:
Experiences with an Object-Oriented Program Analysis
System” , Proceedings of the 34" Conference on
Technology of Object-Oriented Languages and Systems,
pp. 49-60, Santa Barbara, California, 2000.

328

