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Abstract—The classical computing with floating point data 

presentation accumulates small errors at every step. As a 
consequence some times the final result of a complex program is 
entirely false. With regard to this, our paper suggests a 
computation model of p-adic arithmetic using exact Hensel code 
presentation in Visual C++ environment. It could be applied 
successfully for developing of stream ciphers with Feedback with 
Carry Shift Register architecture and for synthesis of 
pseudorandom sequences with variety of statistical properties. 
 

Keywords—Programming, Cryptography, Communication 
system signaling. 

I. INTRODUCTION 

The classical computing algorithms, based on floating point 
data presentation, accumulate small errors at every step. As a 
consequence some times the final result of a long and complex 
program is much distorted or even so entirely false. This 
situation motivated active researches directed to finding more 
powerful and accurate computing tools able to interpret with 
insight a given science or technical problem. The efforts in 
this area leaded to developing of new methods of computer 
programming and data expressing. One of them proposed 
recently, is the method of the so-named p-adic arithmetic [1], 
[4], [6], [7], [8]. It seems to be very effective in some 
applications such as orthogonal signal synthesis, cryptography, 
spread spectrum systems and so on. The positive features of 
this method will be clarified with following example. Let us 
consider the recursive filter which output iu  in time moment 

τ.i  (τ  denotes the clock period of the filter) is: 
 
 1; 1021 ==+= −− uuuuu iii . (1) 
 
The output can be determined using two approaches. The 
simpler one consists in recursive (step by step) computing of 
the consecutive outputs 2u , 3u , …, iu . This way needs i steps 
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and hence a lot of time for large i. The second possible 
approach is that of using the Eq. (2): 
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The Eq. (2) gives the result directly (in   1log2 +i  steps), 

but here a problem is the impossibility to represent the 
irrational number 5  exactly. This obstacle can be avoided 
applying the method of p-adic arithmetic. For instance, the 
number 5  has the following 11-adic exact representation 
(7606, 0) [7]. Hence, the filter output iu  can be calculated 
using Eq. (2) and 11-adic arithmetic in   1log2 +i  steps. The 
final result will be obtained with great accuracy after 
transforming in usual arithmetic. 

With regard to the all above cited, this paper aims to 
suggest a computation model of p-adic arithmetic using exact 
Hensel code presentation in Visual C++ environment. 

The paper is organized as follows. First, the basics of p-adic 
arithmetic are recalled. After then, the computation model of 
p-adic arithmetic using exact Hensel code presentation in 
Visual C++ environment is described. Finally, the advantages 
and possible areas of application of our model are discussed. 

II. BASICS OF P-ADIC ARITHMETIC 

We will explain the bases of the p-adic arithmetic refer to 
[1], [4] , [6]. 

For any positive integer m, denote Zm the ring of integers 
modulo m and by |.| - the canonical ring homomorphism from 
Z to Zm. Let N be the set of natural numbers. For a given 
prime p, a rational number α = a / b can be represented in a 
unique way as is Eq. (3): 

 
 ,)/( epdc ∗=α  (3) 
 
where c, d and e are integers, c, d and p pairwise relatively 
prime, d and p positive. This kind of representation of rational 
numbers is called the normalized form. 

The function in Eq. (4) 
 

 RQp →:||.||  (4) 
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from the rational numbers Q to the real numbers R, defined as 
in Eq. (5) 
 

 






=

≠
=

−

0,0

0,
||||

α

α
α

if

ifp e

p  (5) 

 
is a norm on Q, called the p-adic norm [4]. Furthermore α can 
be uniquely expressed in the following form in Eq. (6): 
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where ai ∈ Zp. The infinite sequence (aeae+1…a-1a0a+1…) is 
called p-adic representation of α. The p-adic expansion of a 
rational number is periodic and it can also assume the 
following form: α = (aeae+1…a-1…ak-m-1’ak-m…ak-1ak), where 
the m digits from ak-m to ak constitute the period. 

For instance, above mentioned 11-adic representation 
(7606, 0) of the irrational number 5  means that 

0...,6,0,6,7 543210 ======= aaaaaa  in Eq. (6). 
We use truncated representation, defined as follows. 
Definition 1 (Hensel Code). Given a prime number p, a 

Hensel code of length r of any rational number α = (c / d)*pe 
is a pair of Eq. (7): 
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Let Hp,r denote the set of all Hensel codes where subscripts 

mean the prime p and the approximation r respectively, and let 
H(p, r, α) indicate the Hensel code representation of the 
rational number α = (a / b)*pe. 

The forward mapping between rational numbers and Hensel 
codes can then be defined on the bases of the following 
theorem. 

Theorem 1 (Forward Mapping). Given a prime p, an 
integer r and a rational number α = (c / d)*pe, such that c, d 
and p pairwise relatively prime integers, the mantissa mantα of 
the code related to the rational number α, is computed by the 
Extended Euclidean Algorithm (EEA) [10] applied to pr and d 
as: mantα ≡ c . y (mod pr), where y is the second output of the 
EEA. 

Definition 2 (Farey Fraction Set). Let 
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The Farey fraction set Fp,r of order N(p,r) is the  subset of 
rational numbers a / b such that: a,b ∈ N, 0 ≤ a ≤ N(p,r), 0 <  b 
≤ N(p,r). 

Arithmetic operations on Hensel codes are carried out, digit 

by digit, starting for the leftmost digit, as in the usual base-p 
arithmetic operations. An addition (or subtraction) can give a 
result in which some leftmost digits are equal to zero. In this 
case we make the addition (or subtraction) produced in a 
pseudo-Hensel code. 

Definition 3 (Pseudo-Hensel codes). A pseudo-Hensel 
code is a code such that a0 = … = ak = 0, for some k with 0 < k 
≤ r-1. 

Theorem 2. Given a prime p, an approximation r, given an 
arithmetic operator Φ in Q and the related arithmetic operator 
Φ’ ∈ Hp,r, if H(p, r, α1) Φ’ H(p, r, α2) = α3’, then there exists 
only one α3 ∈ Fp,r, such that α3’ = α3. 

Now let us consider the arithmetic operations in Hp,r. 
Addition. Given two Hensel codes H(p, r, α) = (mantα , 

expα) and H(p, r, β) = (mantβ , expβ), first of all we must 
remove the smaller mantissa to the right side in order to obtain 
expα = expβ. After that perform the addition taking into 
account that all the operations are carried out from left to 
right. 

Subtraction. The subtraction could be performed using two 
approaches. 

First, we can compute the complement mod pr of the 
minuend and then to carry out the addition. 

Second, if the minuend is a pseudo-Hensel code, then the 
subtraction can be carried out in the usual way, without using 
the complement of the minuend (except in the case when the 
subtrahend is the Hensel code which represents zero). In this 
situation in order to carry out the subtraction we must get a p-
adic unit from the right digit (instead of from the left digit, as 
usually happens in subtraction between two integer numbers). 

Multiplication. When we perform multiplication we must 
operate by multiplying the respective mantissas of the codes, 
and then we must add their exponents. Also in this case the 
code result is truncated to r digits. 

Division. In order to perform division we must operate by 
dividing the respective mantissas of the codes, and then we 
must subtract the respective exponents. 

If the first digit of the divisor is zero, we cannot compute 
the modular inverse as stated in the classical algorithm. 
Nevertheless  we can carry on with the computation, because 
the code approximation has not been decreased, but if we want 
to compute a division in which the dividend belongs to Hp,r 
and the divisor is a pseudo-Hensel code of order k, with k < r. 
We can appropriately manipulate these codes with algorithm 
“Lim92” [7], in order to apply the division algorithm. In this 
way we can avoid the loss of significant digits and we can 
manipulate the pseudo-Hensel codes in the same way as the 
Hensel codes. 

III. COMPUTATION MODEL OF P-ADIC ARITHMETIC 

We propose a computation model of the p-adic arithmetic in 
exact Hensel code presentation in Visual C++ environment. 
The model is based on two files p_adic.h and p_adic.cpp. Our 
class p_adic has the following structure: 
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class p_adic : CObject{ 
public: 
 long a; //numerator 
 long b; //denominator 
 long sign; //sign of the rational number 
 long c; //numerator after elimination 
 long d;      //denominator after elimination 
 long base; //p-adic base 
 long ord; //exponent in the elimination 
 long prec; //precision 
 long cd_pr; //c*d-1 mod pr 
 CArray<int, int>mantisa; // mantissa 
} 
The class p_adic has two constructors.  
The first is p_adic(CString &m, long e, long s, long p, long 

r). It creates expansion from CString, where e is the exponent, 
s – the sign of the exponent, p means the p-adic base and r – 
the approximation. For example, if the initial parameters are m 
= “4333”, e = 2, s = -1, p = 5 and r = 4 then after execution of 
this constructor the next elements receive the values: base = 5, 
ord = -2, prec = 4, mantisa = (4, 3, 3, 3).  

The second constructor is p_adic(long x, long y, long p, 
long s, long r). It creates expansion from rational number, 
where x is the numerator, y – denominator, p – p-adic base, s – 
sign of the rational number, r - the approximation. If we have 
x = 4, y = 3255, s = -1, p = 3, r = 10 then the created object 
will have a = 4, b = 3255, sign = -1, c = 4, d = 1085, base = 3, 
ord = -1, prec = 10, cd_pr = 53389, mantisa = (1, 0, 1, 0, 2, 0, 
1, 0, 2, 2). 

The obtaining of the class elements depends on few 
auxiliary member functions. 

The member function void elimination(long &x, long 
&y,long &e, long p) creates from a given rational number a / b 
the rational number from Eq. (3) with the help of the member 
function long gcd(long x, long y). It returns the greatest 
common divisor [10] from x and y and long fract_ord(long *x, 
long *y, long p) returns the exponent e from Eq. (3). 

The member function long integer_part(long c, long d, long 
s, long pr) calculates the long number cd_pr by computing of 
c*d-1 mod pr, with the help of the member function long 
inverse(long a, long n), which returns a-1 mod n. 

The member function void expansion(long cd_pr) creates 
the p-adic expansion from cd_pr and put it in mantisa. 

We have realized in the class p_adic the following four 
basic operations: 

Addition - void sum(p_adic y, p_adic* z). For example, if 
we have 34/4 + 2/7 in H2,5, the result is (1 0 1 1 0, -1). 

Subtraction - void sub(p_adic* y, p_adic* z). For example, 
if we have 15/9 – 2/28 in H3,7, the result is (2 2 2 2 1 0 0, -1). 

Multiplication - void mul(p_adic* y, p_adic* z). For 
example, if we have 50/7 * 2/23 in H7,6, the result is (1 2 1 5 2 
6, -1). 

Division – void div_norm(p_adic *y, p_adic *z). For 
example, if we have 2/3 / (-51/9) in H7,9, the result is (4 6 4 3 
4 1 1 6 2, 0). 

The class p_adic with the p-adic member functions can be 
included as a part in projects with p-adic calculations. To 
illustrate this we propose an application “Hensel exact 
calculation” - hcalc.exe for executing p-adic arithmetic in 
Hensel code. 

 

 
Fig. 1. Expansion from rational numbers 

 
 

 
Fig. 2. Expansion from string 

 
Here, according to the two constructors, we have two kind 

of p-adic expansion obtaining: first, from rational numbers as 
it is shown on Fig. 1 and second, from string (see Fig. 2). 

IV. CONCLUSION 

The advantages of proposed in our work p-adic 
computation modeling will be clarified by following example. 
Let us consider the modern stream ciphers, which are designed 
by combining the outputs of several Linear Feedback Shift 
Registers (LFSR). Here one new direction of development was 
proposed from Klapper and Goresky recently [5]. It will be 
explained using Fig. 3. 
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Fig 3. The Shrinking Generator with p-adic controlling FCSR 

 
How it is shown, the Klapper & Goresky’s stream cipher 

uses a controling p-adic Feedback with Carry Shift Register 
(FCSR) R to select a portion of the output sequences of LFSRs 
from R1 to Rp-1. Therefore, the produced keystream is a 
shrunken and mixed version of the output sequences of LFSRs 
R1 to Rp-1 as it is specified in Fig. 3. 

The algorithm of shrinking generator with controlling p-
adic FCSR consists of the following steps: 

1. All LFSRs from R1 to Rp−1 and FCSR R are clocked. 
2. If the p-adic output bi = j of control register R is not equal 

to 0, the output bit of register Rj forms part of the keystream. 
Otherwise, if the output bi = 0 of control register R is equal to 
0, the all output bits are discarded. 

In the origin papers of Klapper and Goresky only the case p 
= 2 is studied comprehensively [5]. It is shown [3], that the 
shrinking generator from Fig. 3 could use a generalization of 
FCSRs with stage contents and feedback coefficients in Zp 
where p is a prime number, not necessarily 2. It is shown [5], 
that the work of the controlling FCSR depends on the initial 
loading of the register. Namely, the controlling FCSR ought to 
calculate the p-adic expression of a certain rational number 

,)/( epdc ∗=α  where c, d and e are integers, according to 
conditions in Eq. (3). Moreover, the initial loading of the 
FCSR register have to be: 

 rr
r p

d
cpapaa mod..... 1

110 =+++ −
− . (9) 

Here r is the number of cells tapped in the controlling FCSR. 
It is not hard to see that usage of our class p_adic, proposed 

above, provides the finding of the necessary initial loading of 
the controlling FCSR. 

From all the above stated and from [2], it is easy to see that 
the computation modeling of p-adic arithmetic, proposed in 
the paper, could be applied successfully for: 

- developing of stream ciphers with Feedback with Carry 
Shift Register architecture; 

- synthesis of pseudorandom sequences with variety of 
statistical properties such high linear span, low autocorrelation 
side-lobes and pair wise cross-correlation values, pair wise 
hamming distance. 
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