

373

Software Aspects of Intel Pentium Simulator
Development

Elena I. Zaharieva-Stoyanova1, Radoslav At. Atanasov2, Erkan Sh. Shakir3

Abstract - The simulation technique is often used in computer
architecture development. The software simulators could be used
as a tool for studying the architectures' models and functionality.
In this paper a software simulator named PipeSimul is
represented. It shows the Intel Pentium processors' structure and
functionality. This paper treats the software problems related
with simulator development. The simulation of instructions
execution is realized by independent module, represented in this
paper. The Graphics User Interface is represented, too.

Key words - simulators, computer architecture, Intel Pentium
processor, pipelining.

I. INTRODUCTION

The simulation technique is often used in computer
architecture development. The software simulators could be
used as a tool for studying the architectures' models and
functionality.

The software simulation method is used because of the
following reasons:

• Through the circumstances it is the one way of observing
of insupportable processes

• Software simulation is cheaper; its realization is faster than
hardware execution.

• It has more flexibility
• Software simulation allows to investigate and to modify

the simulating object through its design.
• The simulator is a tool for a dynamic optimization of the

models, who are not able to be analysed by theirs mathematic
description.

• The simulation allows viewing processes hidden into big
and complex modules.

• The simulation technique allows realizing virtual, not
existed models used for an education.

The development of up-to-date processors' architecture is
closely related with instruction-level parallelism and
superscalar concepts [2]. Studying of these concepts for theirs
application in a real architecture needs a software simulation.
This paper treats the problem of software simulator
development. The simulator represents Intel Pentium
architecture.

1Elena I. Zaharieva-Stoyanova is with the Department Computer

Systems and Technologies, Technical University of Gabrovo, 4 H.
Dimitar, 5300 Gabrovo, Bulgaria, E-mail: zaharieva@tugab.bg.

2Radoslav At. Atanasov is a student with the Department
Computer Systems and Technologies, Technical University of
Gabrovo, 4 H. Dimitar, 5300 Gabrovo, Bulgaria

3Erkan Sh. Shakir is a student with the Department Computer
Systems and Technologies, Technical University of Gabrovo, 4 H.
Dimitar, 5300 Gabrovo, Bulgaria

The Intel Processors are among of most used processors in
the computer systems. Developing IA-32 architecture, Intel
Corporation introduces superscalar technique in the Pentium
processor. The Intel Pentium is the first processor with
superscalar architecture. The next steps of IA-32 architecture
development are coming of P6 and NetBurst processor
architectures [1],[3],[7],[8].

In this paper a software simulator named PipeSimul is
represented. It shows the Intel Pentium processors' structure
and functionality. The objective of new simulator creation is
to show the base concepts of the Intel Pentium processors
working by means of short assembler programs. This
simulator could be used also for the evaluation of source code
efficiency. It will be applied in the hirer-school education to
show how superscalar architecture works [4],[5],[6].

This paper treats the software problems related with
simulator development. The simulation of instructions
execution is realized by independent module, represented in
this paper. The Graphics User Interface is represented, too.

II. THE PIPELINE EXECUTION IN INTEL PENTIUM
PROCESSOR

The Intel Pentium processor is the first Intel processor with
a superscalar architecture. It has two execution pipelines to
achieve superscalar performance. Two 5-stages pipelines,
known as U and V, together can execute two instructions per
clock. In comparison with 80486, the on-chip first-level cache
was doubled, with 8 KB devoted to code, and another 8 KB
devoted to data. Branch prediction with an on-chip branch
table was added to increase performance in looping
constructs. The Pentium processor also implements 8-stages
pipeline for float-point instructions [9].

The U pipeline is known as a main pipeline. It can execute
all 80x86 and Pentium instructions. The V pipeline is used
just for hardware executed instructions. The pipelines
structure in given on fig. 1. The U and V pipelines have 5
stages:

• Instruction Fetch (IF) stage is a common for both
pipelines. It fetches two instructions from the first-level (L1)
cache. The active buffer attempts to be filling with 16 bytes
code. If there is a JUMP or CALL instruction (JMP, Jcc, and
CALL), the branch prediction is activated.

• Decode 1 (D1) stage is common for both pipelines, too.
D1 stage consists of two parallel decoders. The Pentium
processor determines whether two consequent instructions can
execute together. If it is possible, the first instruction is loaded
into U pipeline and the second instruction is loaded into V
pipeline.

• Decode2 (D2) is separate for U and V pipeline. It
determines data addresses.

374

• Execution (EX) stage executes instructions. The
instructions run to this stage together but it is not necessary to
leave it together. In this case, the instruction in U pipeline has
to leave this stage first.

• Write Back (WB) is the last stage, where the results are
written into registers and the flags are changed.

The results from the branch prediction could be controlled at
the stage EX (for JMP and CALL instructions), or at the stage
WB (for conditional branches).

Fig. 1 The structure of pipelines

III. BASE STRUCTURE OF INTEL PENTIUM SIMULATOR

PipeSimul is a program simulating the superscalar
architecture of Pentium processors. Its purpose is to visually
show the work of the Pentium’s pipes and maintain execution
of assembly sources step by step, showing the state of
registers, flags, data and stack segments.

PipeSimul is MDI based application. Using MDI
architecture the application might be structured according to
the information for the different needs of the user. The
information is placed in the child windows of the program.
These child windows are based on separate View classes and
Document classes. This provides additional flexibility in
resizing, rearranging, closing and showing windows, which
are in relevance. For example, scrolling of code window
PipeSimul automatically scrolls the window showing the
pipes’ structure. Certain Windows can be closed or
minimized, when not in use. In this way the application
benefits from tiling and cascading. The base structure of
PipeSimul is introduced on fig. 2.

PipeSimul is compiled on Microsoft Visual C++. It’s based
on an open-source project called SoftWire [10].

It is a class library written in object-oriented C++ for
compiling assembly code. It can be used in projects to
generate x86 machine code at run-time as an alternative to
self-modifying code. Its classes are used to parse the assembly
source code and to generate the internal structures of the
assembler. Then they are used to emulate Pentium’s work,

especially the pipeling, simulating the execution of the
instructions as represented in the internal structures (classes).

PipeSumul is a program demonstrating the work of pipes
with its specific features. This application is not a full Pentium
simulator. It is not necessary to show all processes in Intel
Pentium [6]. In the first version the simulator assumes the
following restrictions:

• Simulator executes only real mode applications.
• Simulator uses near program model, so only one code

segment and therefore only near jumps and calls. Only one
data and stack segment are shown, too.

• Simulator can execute the most used instructions. Only
the following instructions: Data transfer: MOV, PUSH,
PUSHA, PUSHAD, PUSHF, PUSHFD, POP, POPA,
POPAD, POPF, POPFD; Arithmethical instructions: ADD,
ADC, SUB, SBB, INC, DEC, CMP, NEG, MUL, IMUL,
DIV, IDIV;Logical instructions: AND, OR, XOR, NOT,
TEST; Shift and rotation: SHL, SAL, SHR, SAR, ROR, ROL,
RCR, RCL, SHLD, SHRD;Instruction flow control: JMP,
CALL, RET, Jcc, LOOP, LOOPZ, LOOPNZ; Flag
manipulation: STC, CLC, CMC, STD, CLD, STI, CLI,
SAHF, LAHF.

These instructions are included in Reduced Instruction Set
Computer (RISC). Pipelining is a feature of RISC
architecture. Therefore, there is no reason to simulate complex
instructions execution.

Fig. 2 The base structure of the simulator

IV. SIMULATION OF INSTRUCTION EXECUTION IN
INTEL PENTIUM

Instruction execution simulation is realized by software
module named PS. This module is a part of PipeSimul
application. PS is realized as C++ source files closed in
namespace Simulator. It this manner the integration of PS
module in another software module is easer because the
conflicts between identifiers are avoided.

Code
Analyzing

Graphic User Interface

Instruction
Window

Data
Window

Pipelines
Window

Registers
Window

Stack
Window

Load File

Call to
Assembler

Execution

Coupling of
Instructions

Branch
Prediction

IF

D1

D2

EX

WB

IF

D1

D2 D2

EX EX

WB

U
 p

ip
e

V
 p

ip
e

375

Fig. 3. The PipeSimul application window

The PS module is designed as independent on PipeSimul

application. Thus, its integration to another software simulator
or to the other similar application is possible.

To use the PS module, it is necessary to instant the object of
class Simulator::TSimulator. The constructor finds the path
the base module directory.

Simulator::TSimulator object creates an object of class
Simulator::TProcessor. Class TProcessor has an array of
pointers to class Simulator::TPipe. Class TPipe represents
pipelines. In this case, the pipeline numbers is two. When the
code has to know this number, it might to bring the value of
the constant named Simulator::TProcessor::PIPES_COUNIt is
possible to change the source code for more than two
pipelines. In this stage of the application development, the
most parts of the code rely that the number of pipelines is two.

The instances of class Simulator:TRAM and class
Simulator::TIOSpace are created additionally. They serve like
as a simulation memory and an I/O address space.

They inherit the base class Simulator::TAbstractDataSpace.
The method Simulator::TSimulation::LoadFile() has as

parameter the path to a source file consisted assembler file.
The method loads file to memory and prepares it for
simulation. It includes: call to Assembler, code analyzing, and
program loading to memory as binary code.

The method Simulator::TSimulator::Clock() simulates one
cycle. It is all needed for an instruction stream control by the
software application.

The pipelines software realization is divided between classes
Simulator::TProcessor and Simulator::TPipe. It includes five
virtual methods: DoIF, DoD1, DoD2, DoEX, DoWB. The first

two methods belong to class Simulator::TProcessor, the other
three methods belong to class Simulator::TPipe. These
functions correspond to the fifth pipeline stages in Intel
Pentium.

This development stage of the simulator executes the
instructions simultaneously. The development provides to
simulate U and V-pipeline functionality by using classes
Simulator::TUPipe and Simulator::TVPipe.

IF stage working represented by DoIF method is to fill 16-
bytes buffer memory.

D1 stage realized by DoD1 creates an object of
TInstructionSet class. This class loads the instruction codes.
At D1 stage, the object of Simulator::TDecoding class is
created to decode the instruction according to the
Simulator::TInstruction object definition.

This approach saves the creation of an extra source code, it
also allows dynamic changing of instruction set.

The method DoD2 computes the addresses and extracts the
operands for an instruction execution.

Methods DoEX and DoWB are realized particularly at this
development stage.

V. SIMULATOR GRAPHICS USER INTERFACE

 The Graphics User Interface of the simulator as software
application is given on fig 3. The most used windows are
given:

• Instruction Window - it contains the executed program
code

376

• Pipelines Window - it represents instruction execution
through pipes.

• Register Window - it shows the registers' content.
There is possibility to open Data segment Window and

Stack segment Window.
The names of created classes and theirs base classes are

given at the table 1.

TABLE 1

Class Base Class File

DataSegment CView DataSegment.h
DataSegment.cpp

DataSegmentDoc CDocument DataSegmentDoc.h
DataSegmentDoc.cpp

InstrFrame CMDIChild
Wnd

InstrFrame.h
InstrFrame.cpp

Instruction CView Instruction.h
Instruction.cpp

InstructionDoc CDocument InstructionDoc.h
InstructionDoc.cpp

RegFrame CMDIChild
Wnd

RegFrame.h
RegFrame.cpp

Register CScrollView Register.h
Register.cpp

RegisterDoc CDocument RegisterDoc.h
RegisterDoc.cpp

Stack CView Stack.h
Stack.cpp

StackDoc CDocument StackDoc.h
StackDoc.cpp

VI. CONCLUSION

Software simulation is often used technique in computer
architecture development. This paper represents Intel Pentium
simulator development. The key points of simulator creation
as software tool are: Graphics User Interface development;
instruction execution simulation; simulation of branch
prediction logic.

This paper represents the solution of instruction execution
simulation and Graphics User Interface creation.

The execution of assembler instructions is simulated by
module named PS. It uses an open-source object called
SotfWire for an assembler code compiling. The PS is
designed as independent module. It may be used in another
software simulator or similar application.

REFERENCES

[1] Hinton G., D. Sager, M. Upton, D. Boggs, D.Carmean , A.
Kyker, P. Roussel, The Micro architecture of the Pentium 4
Processor, Intel Technology Journal Q, 2001.

[2] Hlavicka J, Computer Architecture, CVUT Publishing house,
1999.

[3] Keshava J., Vl. Pentkovski, Pentium III Processor
Implementation Tradeoffs, Intel Corp., Intel Technology Journal
Q2, 1999.

[4] Zaharieva-Stoyanova E., Simulation Models Of Pipelining in
Intel Pentium Processors, IEEE-TTTC International Conference
on Automation, Quality and Testing, Robotics, Cluj-Napoca,
Romania, 2002, pp. 373-378.

[5] Zaharieva-Stoyanova E., Simulation of Pipelined Data Processing
in Intel Pentium Processor, CompSysTech, Sofia, 2002, pp I.14-
1 –I.14-5.

[6] Zaharieva-Stoyanova E., R. Atanasov, E. Shakir, V. Frunze,
Software simulator of Intel Pentium Architecture, Advanced
Control Theory and Applications, June 16 – 29, Plovdiv –
Gabrovo, Bulgaria, 2003, pp. 91-95

[7] A Detailed Look inside the Intel NetBurst Micro-Architecture of
the Intel Pentium 4 Processor, Intel Corporation, 2000.

[8] IA-32 Intel Architecture Software Developer's Manual, Intel
Corporation, 2001.

[9] Pentium, NiSoft Ltd ,1998.
[10] Capens N., http://softwire.sourceforge.net.

