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Numerical Modelling 
of Dielectric Mixtures 

Antoniya R. Georgieva 

Abstract - The present paper reports the results of a numerical 
analysis of electromagnetic fields in two component dielectric 
mixtures. The mixture consists of a homogeneous background in 
which circular cylinders are embedded. Both materials are 
lossless. Finite-difference time-domain method is used to 
simulate wave propagation through the mixture. The effective 
permittivity is determined from the reflection coefficient. The 
numerical results are compared with theoretical mixture models. 

Keywords - Dielectric mixture, artificial dielectric, effective 
permittivity, FDTD method. 

I. INTRODUCTION 

Materials encountered in nature are quite often 
inhomogeneous and complicated in structure. Many of them, 
like snow, sea ice and soil, consist of several phases with 
different electromagnetic properties. Such media are referred 
as dielectric mixtures in literature. One of the phases is 
usually considered as a background medium and the other are 
treated as inclusions. 

The problem of interaction between electromagnetic waves 
and such a complex material object is quite a difficult one to 
solve. However, under certain conditions the dielectric mix-
ture could be considered as a homogeneous medium 
characterized by only one macroscopic parameter - the 
effective permittivity (the components of the mixture are 
assumed non-magnetic).  

The properties of dielectric mixtures depend on the internal 
structure of the medium i.e. the shape, the volume fraction, 
and the arrangement of the different components. This makes 
it possible to develop new artificial materials having desired 
electromagnetic properties. 

The history of the study of heterogeneous mixtures dates 
back to 19th century and several analytical and empirical 
models have been proposed. The advances in computer 
technology in the recent years made it feasible to perform 
numerical predictions for the electrical parameters of 
mixtures. 

This paper demonstrates an approach for determining the 
characteristics of a heterogeneous lossless two-phase mixtures 
numerically by means of the Finite Difference Time Domain  
(FDTD) method. This is a dynamic method to solve the full 
set of Maxwell equations in a finite region. For computational 
restrictions, a two-dimensional mixture is treated instead of 
the full three-dimensional case. The inclusions are two-dimen- 
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sional spheres (cylinders). Both regular lattice and random 
location of inclusions are studied.  

The effective permittivity of the material is deduced from 
the reflection coefficient at the surface of the mixture by 
transmission line analogy. The effective permittivity concept 
is defined to the permittivity of such a homogeneous sample 
from which the reflection coefficient is the same as from the 
mixture under study. The simulation is carried out in free 
space. 

The results are obtained as a function of the volume 
fraction (the volume of inclusions to volume of background 
medium ratio) for various contrasts between permittivities of 
the ingredients.  

The numerical results are compared to the most common 
mixing rule predictions such as the Maxwell-Garnett and 
Bruggeman models. 

II. MIXING FORMULAS IN TWO DIMENSIONS 

As mentioned previously, the attention in the following is 
limited to 2-D mixtures. In the literature, many mixing models 
can be found for the effective dielectric permittivity of 
mixtures. The major limitation of this models is that the 
inhomogeneities have to be of clearly smaller scale than the 
wavelength of the operating field. Otherwise scattering effects 
inside the medium cannot be neglected and the concept of the 
effective permittivity loses its physical meaning. Here are 
presented some of the commonest mixing formulas.  

The oldest known mixing rule, the Maxell-Garnett formula, 
reads in two dimensions [2]: 
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where circular inclusions (2-D spheres) of permittivity εi are 
embedded in homogeneous host medium (εh) and occupy a 
volume fraction f. It is to be noted that all permittivities in this 
paper are relative quantities.   

Another famous mixing rule is the symmetric Bruggeman 
formula [2]: 
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The approach presented in [2] collects dielectric mixing 
formulas in two dimensions into one family: 
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For different values of the dimensionless parameter ν, the 
previous mixing rules are recovered:  ν = 0 gives the 
Maxwell-Garnett rule, ν = 1 gives the Bruggeman formula. 
The third approximation for ν = 2 gives the Coherent Potential 
formula [2] known in solid state physics. 

Different mixing models predict different effective 
permittivity values for a given mixture. However, there are 
theoretical bounds that limit the range of predictions. The 
loosest bounds are the so-called Wiener bounds [1,2]: 
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These two cases correspond to capacitors connected in 
parallel or series in a circuit. The bounds retain the minimum 
and maximum character independently of the type of the 
mixture, i.e. they are valid for both εi > εh and εi < εh. 

III.  PRINCIPLE OF NUMERICAL CALCULATION  

The effective permittivity of a mixture is determined  by 
calculation of the reflection coefficient from a sample. Both 
cases of a regular lattice and random positioned circular 
inclusions are studied. In the latter case overlapping of 
inclusions is allowed. The volume fraction of inclusions is 
controlled with their number keeping the radius constant. 

Using a standard FDTD scheme [5], reflection from a 
sample of the mixture is simulated in free space. A case of 
parallel polarization is studied. The incident wave is a plain 
wave with components Ey and Hz coming from free space at 
an angle of 90o to the sample surface. First order Mur’s 
absorbing boundary conditions (ABC) are used to simulate 
infinite space outside the artificial computation domain 
borders. Fig.1 illustrates the simulation setup.  

The computational domain has a size of 150x50 cells. The 
used cell size is Δx = Δy = 3mm. The reflecting surface of the 
mixture is placed at x = 65. The diameter of inclusions is 6 
cells. Excitation is performed at a distance of 10Δx from the 
left border of the computational domain. The time behavior of 

the excitation is a sinusoide of unit amplitude. One simulation 
is run as long as is needed to create a steady state.  

As results of the simulation, electric field integrals in y-
direction are calculated for each time step. Each integral is 
equivalent to voltage between points with coordinates (x,0) 
and (x,50). The total field in front of the reflecting surface 
pulses, varying from a minimum (Umin) to a maximum (Umax) 
value as shown on Fig.2. The ratio of these values gives a 
voltage standing wave ratio (VSWR) defined by analogy with 
the transmission line theory: 
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where R is the reflection coefficient. 
On the other hand the reflection coefficient can be 

determined from the Freshnel formulas. In the case of 
perpendicular incidence and parallel polarization we have: 
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Substitution of (7) in (6) gives: 

.effVSWR ε=                                 (8) 

Thus, the effective relative permittivity can be estimated by 
observing the total field variations in time in front of the 
reflecting surface. 

An important issue in the simulation setup is incorporation 
of circular inclusions to the Cartesian square grid used for 
FDTD formulation of the Maxwell equations. Usually 
staircasing is used to represent curved boundaries provided 
that the grid cell is sufficiently smaller than the curved body. 
This technique, however, inevitably affects the accuracy of 
the simulation. To decrease this effect, in the current analysis 
weight coefficients are used for determining permittivity 
values between E field nodes when one of the nodes is inside 
an inclusion and the other lies in the background medium. 
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Fig.2. Reflection from dielectric mixture surface. Voltage is plotted
as a function of x -coordinate, shown in spatial steps (one steps is
equal to 3 mm). In A only the incident wave is shown, in B reflection
starts, C and D  show field pulses in time. Simulation is carried out at
1.5 GHz. The effective permittivity of the mixture is 2.4.
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Fig.1. Schematics of the simulation setup. The dielectric mixture is
formed of circular inclusions infinite in z -direction (cylinders). A
plane wave is launched to travel in x -direction and reflection is
studied. Electric field integrals are calculated in y -direction for each
value of x to yield voltages.

∫= dyEU y



837 

Fig.3 illustrates this idea. The value of permittivity between 
the nodes “A” and “B” is: 
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where lin is the length of the cell edge part falling outside the 
inclusion boundary and Δs is the spatial step. 

IV. SIMULATION ACCURACY 

The accuracy of the FDTD simulation can naturally be 
increased by decreasing the grid size (the spatial step). 
However, halving the cell size causes the computational time 
to grow by factor of four, and simulation must be run twice as 
long as before in terms on time steps. 

A general rule in FDTD algorithm is to keep the spatial step 
much smaller (at least 20 times) than the shortest wavelength 
in the computational region [1]. At a frequency of 1,5 GHz 
within a region with maximum permittivity value of 10, the 
wavelength is 63 mm which is approximately 20 times larger 
than the grid size of 3 mm used in the simulation.  

To test the influence of the grid size on the effective 
permittivity result, a number of simulation were performed in 
which inclusions were arranged in a regular lattice and their 
volume fraction was kept the same, but the cell size was 
varied. For mixtures with εi < εh  the results do not vary with 
the cell size. The composites with εi > εh , however, exhibit a 
slightly increasing trend in obtained permittivity value vs. cell 
size. Hence, for this type of mixture it is reasonable to use a 
denser grid. 

The frequency of the simulation does not influence 
significantly the obtained effective permittivity. Simulations 
are carried out at three frequencies (700 MHz, 1 GHz and 1,5 
GHz) and averaging is used to obtain a representative result. 

V. RESULTS 

Effective permittivity was calculated for two types of 
mixtures - normal (εi > εh) and inverted (εi < εh). Both regular 
lattice and random distribution of inclusions are studied. Fig.4 
illustrates field distribution inside such samples, detected at 
very low frequency (static case). There, contour plots of the 
electric field amplitude are given. Dark color corresponds to 
high values of electric field intensity. Light coloring marks the 
regions with low intensity values. The position of inclusions  

can be clearly seen. As expected, the field amplitudes are 
smaller in areas with higher dielectric permittivity.  

The results for a medium with a regular lattice of inclusions 
are shown in Fig.5. The inclusion permittivity is εi = 2.5 and 
the host material is air (εh = 1). The cross sign denotes 
numerical results. Three analytical models are plotted too for 
volume fractions up to 1. However, the maximum volume 
fraction that could be achieved for regular lattice of inclusions 
is 0.78 (cylinders that do not overlap cannot fill the entire 
space).  

For low volume fractions the analytical results obtained 
from different formulas do not differ significantly. They all 
well coincide with numerical results. For high volume 
fractions Bruggeman model appears to be closest to the 
numerical results. 

Fig.6 shows the results for inverted mixture with εi =1 and 
εh = 2.5 Comparison with Fig.5 shows that the results for a 
chosen volume fraction are not equal as Bruggeman 
symmetric formula predicts. Increasing of volume fraction 
and/or the difference between εi and  εh causes this effect to 
become more significant. 

Fig.3. An estimation of the permittivity between two nodes lying in
different media is based on  geometry considerations.
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εh iε
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Fig.4. Electric  field distribution in normal (A) and inverted  (B) mix-
tures.  In  A a sample  with  regular  lattice  of   inclusions  is  shown.
In B  the  inclusions  are  randomly  distributed.   There are  four
inclusions, three  of  them  are  overlapping.
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In Fig.7 one can see the results for a mixture with εi =20 
and εh = 3.5. As the permittivity contrast grows, Bruggeman 
model predicts higher values of εeff than the numerical results 
for high volume fraction of inclusions (f > 0.5). Maxwell-
Garnett rule can be used only for low volume fractions. This 
is natural, because the model is derived analysing a single 
inclusion not interacting with others, which is reasonable for 
low volume fractions.  

In Fig.8 a set of 50 simulation results for a mixture with 
randomly positioned inclusions are compared with Maxwell-
Garnett and Bruggeman models. In every simulation both the 
volume fraction and positioning of inclusions were randomly 
chosen. Therefore, each sample has a permittivity that may 
differ from the value of another sample having an identical 
volume fraction because of their different structure. For low 
volume fractions results converge to a single value because 
the probability of inclusion overlapping and forming complex 
structures is low. This means that different samples do not 
differ in the type of their microstructure. The same happens in 

the case of high volume fractions when most of the inclusions 
overlap every time the simulation is carried out. Overlapping 
of inclusions allows volume fractions up to one to be 
achieved.  

All the results in Fig.8 lie between the Wiener bounds. 
Numerical results are in very good agreement with the 
Bruggeman formula. The Maxwell-Garnett formula is 
applicable for low volume fractions and low contrast between 
the permittivities of the two phases. 

VI. CONCLUSION 

This paper presented a numerical approach based on the 
common Finite Difference Time Domain method for 
obtaining the effective permittivity value for two-phase 
lossless mixtures with periodical and random arrangements of 
inclusions. The numerical results were compared to the 
predictions of some well-known theoretical models. Best 
agreement was obtained with the Bruggeman rule.  

The reported numeric technique can be easily extended to 
multiphase mixtures and various shapes of inclusions.   
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