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On Relation Between Minimum Variance and Sliding 
Mode Equivalent Control Concepts 
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Abstract - The paper investigates the connection existing 
between the minimum variance control and the discrete-
time sliding mode equivalent control. It is shown that the 
minimum variance control represents the counterpart of 
the discrete-time equivalent control for the input-output 
based sliding mode control design approaches. 
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I. INTRODUCTION 
 

Variable structure control (VSC) systems [1] are well-
known and well-studied class of nonlinear systems, wherein 
sliding mode is of particular interest. It happens when a 
control forces a system state to move along a predefined 
sliding surface in spite of the actions of external disturbances 
and parameter perturbations. This is accomplished by a high 
frequency control signal whose switching is guided by a 
function also known as the switching function. The switching 
function, equalized with zero, determines the equation of the 
above mentioned sliding surface. When the system is in 
sliding mode, the control can be replaced by the so-called 
equivalent control [2], a very powerful mean for the analysis 
of system dynamics. If a system state is on a sliding surface, 
the equivalent control will ensure a system motions towards 
the steady-state. 

The discretization process and the control algorithm 
implementation by using a digital signal processor produce a 
quasi-sliding mode [3] and a discrete-time equivalent control 
[4]. Regardless of the use of continuous- or discrete-time 
sliding mode techniques, the equivalent control is based on 
the system modeling in the state space. For the input-output 
based control approaches, the combinations of minimum 
variance and sliding mode controls seem to be more 
appropriate [5-7]. 

The aim of this paper is to show that the minimum variance 
control corresponds to the discrete-time equivalent control for 
the case when only plant input and output signals are 
measured to form the control law. As we can see later, this 
link is settled by the implementation of the techniques for 
equivalent control derivation on some modified system state-
space model. 
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The paper is organized as follows. In Section II and Section 
III, the brief descriptions of the discrete-time equivalent 
control and the minimum variance control are given, 
respectively. Section IV presents the procedure which proves 
that the minimum variance control is really discrete-time 
equivalent control analog for input-output based VSC 
systems. This approach is referred to as the input-output based 
equivalent control concept. In Section V, the illustrative 
example of the second order system demonstrates the 
established connections between the minimum variance 
control and the equivalent control, and explains why the 
equivalent control algorithm, described in Section IV, can not 
be used for treating the VSC problems based on measuring of 
input-output signals. 
 

II. DISCRETE-TIME EQUIVALENT CONTROL 
 

Let us consider a discrete-time state-space model of a 
single-input-single-output plant of the n-th order: 
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where: T
21 ])(...)()([)( kxkxkxk n=x  is a vector of state 

coordinates, )(ku  is a control input, )(ky  is a plant output, 
[ ]

nnij x
φ=Φ  and [ ] 1xniγ=γ . We suppose that a system is 

autonomous, i.e. a reference signal is equal to zero. Notice 
that  )()( kTk •=•  with T as a sampling period. Let the 
switching function be: 
 ],...[),()( 110 −== nkks σσσσσx  (2) 
with the coefficients of σ  forming the Jury’s polynomial. 

By substituting Eq. (1) in Eq. (2), someone gets: 
 )()()1( kukks σγσΦx +=+ . (3) 

The liner control law that would provide the ideal discrete-
time sliding mode, also called the discrete-time equivalent 
control, is obtained by solving 0)1( =+ks  as: 

 ),()()( 1 kkueq σΦxσγ −−=  (4) 
assuming  0≠σγ . In other words, if the state of the system   
is initially on the sliding  surface 0)( =ks , the control (4) will 
provide the system motion on 0)( =ks  and towards the 
steady state. 
 

III. MINIMUM VARIANCE CONTROL 
 

The discrete-time model of the plant (1) in z-domain is 
given by: 
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where: 
 )det()( 1 ΦI −= −− zzzA n , (6) 

 γΦId )(adj)( 11 −= +−− zzzB n , (7) 

and 1−z  is a unit delay ( sTez −− =1 , s is a complex variable). 
The switching function is now chosen as: 

 )()()( 1 kyzCks −= . (8) 
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has all zeros inside the unit disk.  
The linear control ensuring 0)1( =+ks  is the minimum 

variance control: 
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The polynomials )( 1−zE  and )( 1−zF  are the solutions of the 
so-called Diophantine equation: 
 )()()()( 11111 −−−−− =+ zCzFzzAzE . (10) 

It can be easily proved, by implementing Eq. (9) in Eq. (5), 
taking into account Eq. (10), that 0)1( =+ks  is ensured by 
the control (9), indeed. 
 

IV. INPUT-OUTPUT BASED DISCRETE-TIME 
EQUIVALENT CONTROL APPROACH 

 
In order to show that the minimum variance control 

represents the equivalent control analog for the input-output 
based VSC systems, we convert the plant model (1) using the 
following transformation: 
 )()( kk Txz = , (11) 
where: 
 [ ]T

21 )(...)()()( kkkk nzzzz = , (12) 

 [ ]T)(...)1()()( nkxkxkxk iiii −−=z , (13) 
and T is the transformation matrix in the form of: 
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 [ ]T1 ...1 nzz −−=t , (15) 
and we implement the procedure described in Section II for 
obtaining the discrete-time equivalent control. 

The implementation of Eq. (11) in the plant model (1) 
gives: 

 ),()(

...

...

...

)1( kukk


















+


















=+

n

2

1

nnn2n1

2n2221

1n1211

γ

γ
γ

z

ΦΦΦ

ΦΦΦ
ΦΦΦ

z  (16) 

with: 
 )1(x)1( ++= nnij IΦ ij φ , (17) 

 tγ i iγ= , (18) 
since: 
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The model (16) can be rewritten as: 

 )()()()1( 211 kukkk 11211 γzΦzΦz ++=+ , (20) 
 )()()()1( 212 kukkk 22221 γzΦzΦz ++=+ , (21) 
where: 
 [ ],... 1n131212 ΦΦΦΦ =  (22) 
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From Eq. (21), )(2 kz  is calculated as: 
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and substituted in Eq. (20), providing: 
 ),()(~)()(~)1( 11 kuzkzk γzΦz +=+  (27) 
with: 

 ( ) ,)(~ 1
)1(x)1( 22 21221211 ΦΦIΦΦΦ −

−− −+= nnzz  (28) 

 ( ) .~ 1
)1(x)1( 22 222121 γΦIΦγγ −

−− −+= nnz  (29) 

We choose now the switching function to be: 
 ].~...~~[~),(~)( 101 nccckks == czc  (30) 

Notice that Eqs. (8) and (30) are equal if the coefficients 
nicc ii ,0,~ == . As in Section II, the discrete-time 

equivalent control is obtained by solving: 
 ,0)()(~~)()(~~)1( 1 =+=+ kuzkzks γczΦc  (31) 
as: 
 ),()(~~))(~~()( 1

1 kzzkueq zΦcγc −−=  (32) 

assuming 1))(~~( −zγc  is realizable. Eqs. (9) and (32) have the 
similar form, representing the digital filters of the same order. 
This will be shown by the illustrative example given in the 
next section. 
 

V. ILLUSTRATIVE EXAMPLE 
 

To promote the conversion procedure given in the previous 
section and to show that it gives similar digital filter as the 
minimum variance control technique, we consider the second 
order plant model whose transfer function is: 
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and the continuos-time state-space model: 
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Under the assumption that a control signal is constant during 
sampling period, TktkTkTutu )1(),()( +≤≤= ,the discrete-
time model in the state-space is obtained from (34) as: 

 ),(
)(
)(

)1(
)1(

2

1

2

1

2221

1211

2

1 ku
kx
kx

kx
kx









+
















=








+
+

γ
γ

φφ
φφ

 (35) 

using standard discretization procedure, and in z-domain: 
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For 707.0=ζ , 10=nω  and sT 01.0= , the models (35) and 
(36) become: 
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respectively. We also suppose that the switching functions are 
identical in both cases i.e. ,~

00 cc =  11
~cc =  and 22

~cc =  and 

the polynomial )( 1−zC  is defined as: 

 211 ))2exp(1()( TfzzC cutπ−−= −−  (39)  
with Hz1=cutf . 

The minimum variance control for the plant model (36) is 
given by: 
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where: 
 ,0.0194/ 2211010 −=++= φφccf  (41) 
 ,0.0138/ 21122211021 =+−= φφφφccf  (42) 
 ,0.004810 == γg  (43) 
 0.0045.2211221 =−= φγφγg  (44) 

The implementation of the procedure elaborated in Section 
IV yields: 
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It is obvious from Eqs. (40) and (45), that the minimum 
variance control approach and the procedure based on the 
classical equivalent control method with the transformed 
state-space plant model produce, as a result, two similar 
digital filters of the same order. Accordingly, we conclude 
that the minimum variance control can really be treated as the 
equivalent control analog for the input-output based VSC 
systems. 

As one can see, the control (45) represents the special case 
of the minimum variance control (40) with: 
 ,02 =c  (49) 
 .2201 φcc =  (50) 

It is also evident that the control law from Section IV 
depends only on plant parameters since the vector c~  vanishes 
during the design procedure. Therefore, the system dynamics 
in sliding mode can not be chosen freely when the control 
algorithm (32) is implemented. That is the reason why this 
approach is not used in the input-output based sliding mode 
control. 

The system responses with nominal plant parameters are 
shown in Figs. 1 and 2 for both control algorithms: (40) and 
(45). The minimum variance control law gives better dynamic 
behavior, which is determined by Eq. (39). 
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Fig. 1. Response of  system with minimum variance control (nominal 

plant parameters) 
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Fig. 2. System response with the control given by Eq. (45) (nominal 

plant parameters) 
 

The responses of the system with perturbed plant 
parameters ( 1=ζ  and 12=nω ) are presented in Figs. 3 (Eq. 
(40)) and 4 (Eq. (45)). The system with the minimum variance 
control does not change its response significantly, while the 
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control law (45) gives unstable system output, what is 
expected, since the control law (45) depends only on plant 
parameters, i.e. there is no control mechanism to compensate 
the parameter variations. 
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Fig. 3. Response of  system with minimum variance control 

(perturbed plant parameters) 
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Fig. 4. System response with the control given by Eq. (45) (perturbed 

plant parameters) 
 

VI. CONCLUSION 
 

The paper establishes the relation between the minimum 
variance control and the discrete-time sliding mode equivalent  

control. It is shown that the minimum variance control can be 
treated as the discrete-time equivalent control analog in the 
cases when the input-output based variable structure control  
designs are considered. The proof of this correspondence 
starts with the transformation of the initial state-space model 
into the state space model with time-delayed state coordinates. 
To reduce the obtained model to the model with only plant 
outputs and its time-delayed values, the z transformation is 
introduced. Then, the standard equivalent control design 
procedure is implemented, leading to the digital filter of the 
same order as in the case of the application of the minimum 
variance control concept. Unfortunately, this approach is 
limited by a not-freely choice of the system dynamics in 
sliding mode, since the coefficients of the control algorithm 
are only dependant on plant parameters. That is the main 
reason why this approach is not used in the design of input-
output based sliding mode control laws. 
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