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 Abstract - The magnetic levitation control system of a metallic 
sphere is an interesting and visual impressive device successful 
for demonstration many intricate problems for control 
engineering research. The dynamics of magnetic levitation system 
is characterized by its open-loop instability, highly nonlinearity 
and complexity. In this paper an  approach to the nonlinear 
velocity estimation in the control system for positioning of the 
levitating sphere is addressed. Results of several simulation runs 
are given to verify the analytical investigations. 
  Keywords - Nonlinear observer, Magnetic levitation system, 
Control engineering education. 

I.  INTRODUCTION 

Magnetic levitators not only present 
intricate problems for control 
engineering research, but also have many important 
applications, such as high-speed transportation systems and 
precision frictionless magnetic bearings. From an educational 
viewpoint, this process is highly motivating and suitable for 
laboratory experiments and classroom demonstrations, as 
reported in the engineering education literature [1]-[9].  

The classic magnetic levitation control experiment is 
presented in the form of laboratory equipment given in Fig. 1. 
The complete purchase of the Feedback Instruments Ltd. 
Maglev System 33-006 [10] was supported by WUS (World 
University Service [11]) – Austria under Grant CEP  (Center 
of Excellence Projects).  
   

 
Fig. 1.  Photograph of magnetic levitation system  

This attraction-type levitator system is 
a challenging plant because of its 
nonlinear and unstable nature. The 
suspended body is a hollow steel ball of 
25 mm diameter and 20 g mass. This results in a 
visually appealing system with convenient time constants. Both 
analogue and digital control solutions could be implemented. In 
addition, the system is simple and relatively small, that is portable. 
 In order to obtain smooth and sufficiently accurate position 
and speed signals, an observer structure is often implemented. 
The observer processes the voltage command and position 
signal from transducer as it is shown in Fig. 2.  
  

 
  

Fig. 2. Block diagram of the plant with observer 
 
  In this paper, referring to the problem of ball positioning 
beneath an electromagnet, the possibility of employing the 
Lie-algebraic method [12] in nonlinear velocity estimator 
design is considered. In the proposed method a nonlinear 
transformation is found, that brings the system into a canonical 
form, from where observer design is facilitated.   
 

II.   SYSTEM DESCRIPTION 

 The Magnetic Levitation System (Maglev System 33-006 
given in Fig. 1) is a relatively new and effective laboratory set-
up very helpful for control experiments. The basic control goal 
is to suspend a steel sphere by means of a magnetic field 
counteracting the force of gravity. The Maglev System 
consists of a magnetic levitation mechanical unit (an enclosed 
magnet system, sensors and drivers) with a computer interface 
card, a signal conditioning unit, connecting cables and a 
laboratory manual.  
 In the analogue mode, the equipment is self-contained with 
inbuilt power supply. Convenient sockets on the enclosure 
panel allow for quick changes of analogue controller gain and 
structure. The bandwidth of lead compensation may be 
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changed in order to investigate system stability and time 
response. Moreover, user-defined analogue controllers may be 
easily tested. Note, that the position of the sphere may be 
adjusted using the set-point control and the stability may be 
varied using the gain control.  
 In the digital mode, the Maglev System operates with 
MATLAB

 /SIMULINK software. Feedback Software for 
SIMULINK is provided for the control models and interfacing 
between the PC and the Maglev system hardware. 
 

III.  MAGNETIC LEVITATION DYNAMICS  

 The modeling of the electromagnetic levitation system is 
based on its electrical, mechanical, and electromechanical 
equations [6]-[9] , as follows 
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where ,m x  and v  denote the ball’s mass, position and 
velocity, i  is the current in the coil of the electromagnet, e  is 
the applied voltage, R  is the coil’s resistance, )(xL  is the 
coil's inductance, g  is the gravitational constant and C  is the 
magnetic force constant. Note that the inductance )(xL  is a 
nonlinear function of the ball's position with some typical 
approximation that can be found in the literature [9].    
 Adopting  ( ), ( )x t v t  and ( )i t  as state variables, and 
voltage e  as control signal, the equation of motion for the 
magnetic levitation system can be written as 
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IV.  NONLINEAR OBSERVER DESIGN 

 Nonlinear observer form is defined to be a canonical form 
for which an observer can be constructed with a linear error 
dynamics. Such a concept has emerged as a dual to the 
feedback linearization problem known in nonlinear control 
systems theory [13]. The system can be transformed into a 
nonlinear observer form via a coordinate change. The Lie-
algebraic method has be proved to be an effective means of 
coordinate transformation map obtaining.  

 Consider the vector-valued functions   

 : n nℜ → ℜf      and      g: ℜ → ℜn n . 

Definition 1. The Lie bracket is defined by 

 [ ], ( ) ( ) ( ) ( ) ( )∂ ∂= −
∂ ∂

f gf g x x g x x f x
x x

 , (3) 

where ∂ ∂f x  and  ∂ ∂g x  are  the Jacobian matrices of  f  and 
g , respectively.  
 Using an alternative notation, we can represent the Lie 
bracket as 
 [ ] ( )1, ad ,=f g f g    .                  (4) 

 We also define 

 ( ) ( )1ad , , ad ,i i− =  f g f f g  (5) 

with     ( )0ad , =f g g    .  

 Let dh  denotes the gradient of  scalar function h  with 

respect to x , that is Tdh h= ∇ . Let ,⋅ ⋅  denotes the inner 

product on ℜn .  
Definition 2. hfL  represents the Lie derivative of h  with 
respect to f and is defined by 

 d ,h h=f fL    . (6) 
We shall employ the following notation 
 ( )1i ih h−=f f fL L L  (7) 

where  0h h=fL   . 

 With these definitions, the Lie derivative of dh  with 
respect to the vector field f takes the form 

 
TT(d )(d ) (d )hh h

 ∂ ∂= + ∂ ∂ 
f

ff
x x

L  . (8) 

One may easy verify that so defined Lie derivatives are 
realated by the  following so-called Leibnitz formula 

 [ ] [ ], d , ,h h h h= = −g f f gf g f gL L L L L     . (9) 

Note that the following relation is valid 

 ( )d dh h=f fL L . (10) 

 Consider the class of time-invariant nonlinear single-
input/single-output systems described by 
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where n∈ℜx , y ∈ℜ , and f  and h  are n-dimensional vector 
and scalar function, respectively. We desire to find a nonlinear 
transformation  : n nℜ → ℜP , where  

 ( )∗=x P x  , (12) 
such that, in the new coordinate, system (Eqs. (11)) is 



475 

represented as 
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 It is convenient to utilize Lie-algebraic notation [12], [13], 
as follows  

 ( )∗ ∗
∗

∂=
∂

Px f x
x

 , (14) 

where 
1 nx x∗ ∗ ∗
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P P P
x

 . (15) 

 It is straightforward to show that all the columns of  
∗∂ ∂P x is possible to express in terms of the single “starting 

vector”  1x
∗∂ ∂P  as  
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To obtain an expression for the starting vector, the equation 
( ) ny h x∗= =x  is used, and by repeated application of 

Leibnitz’s formula given by Eq. (9), one may show that 
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 The system form given by Eq. (13) is called nonlinear 
opserver form and the matrix 
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is termed the observability matrix of the system defined by 
Eq. (11). The starting vector 1x

∗∂ ∂P  is equal to the last 

column of the matrix -1( )xO . 
 Note that it is not easy to obtain in general the coordinate 
transformation map since it requires one to solve a set of 
partial differential equations. However, the advantage of 
employing the preceding technique of putting the system into 
observer form, is that observer design in the new coordinate 
system is extremely simplified. Namely, for the case of a 
single-output system consider now the observer state 
equations 
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where ŷ  and the gain matrix K  are defined as   

[ ]ˆ ˆ0 0 1y ∗= x  and  [ ]T
10 −= nkkK .  

 If the error vector is defined as   
 ˆ∗ ∗ ∗= −e x x ,  (20) 
it follows that the homogeneous differential equation becomes 
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Hence, if K  is chosen so that the system in Eq. (21) is 
asymptotically stable, the reconstruction error will always 
converge to zero. Via an appropriate selection of K , it is easy 
to assign the spectrum of the characteristic polynomial of the 
Eq. (21) given by 
 1

o 0 1 1( ) n n
ns k k s k s s−

−∆ = + + + +   . (22) 

V.  OBSERVER DESIGN PROBLEM SOLUTION 

 Note, that in most cases some, but not 
all, of the state variables can be 
measured. In this case, we need to 
estimate the unmeasured state variables 
and the estimated values can be used to 
perform the adequate control. In the 
considered magnetic levitation system the 
ball’s position and velocity will be 
estimated. Namely, we choose the state variables 
1x x=  and 2x v= ; for the plant output ( y ) we take ball’s 

position which is controlled by the applying voltage (input u ).  
 According to the consideration given in 
[5], we have for the plant parameters: the ball’s mass 

22.12 10 km g−= × , the gravity acceleration 29.81m sg = , 
the electromechanical conversion coefficient 

4 2 21.2 10 Nm Ak −= × as well as the  current/voltage 
coefficient 0.166 A Vρ = obtaining  constant 

2 6 2 23.307 10 Nm VC k −= ρ = × . These parameters lead to the 
elements of the vector function ( )f x  in Eq. (11) given by 
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 A straightforward calculation given in the previous section 
yields transformation 2 2: ℜ → ℜP , where 

 0 1( ) 1 0
∗ ∗ = =   

x P x x  (24) 

such, that the system given by Eqs. (11) and (23) may be 
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transformed into observer form as 
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and  [ ]1 20 1y x∗ ∗= =x .  (26) 
 For the system given in the canonical coordinates by  
Eqs.(25)  and  (26),  the  observer  can  be constructed  with  a  
linear error dynamics, i.e.  
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  (27) 
The continuous domain observer in the original coordinates is 
obtained as 
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with characteristic polynomial of linear 
error equation given by                    

 2
o 0 1( )s k k s s∆ = + +    .                (29) 

VI.  SIMULATION RESULTS 
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Fig. 3. Estimation results derived by observer (Eq. (28))  

 
 Results of analytical design given above are verified by several 
simulation runs. The system is exited by the pulse generator signal 
with period of 2 s . The traces of position and velocity signals in 

Fig. 3 show the ability of observer given by Eq. (28)  

( )5 3
0 16.4 10 , 1.6 10k k= × = ×   to estimate the state variables.   

Note  that  the  system  has  been  simulated  in   all details, taking 
into account the limited resolution (8-bit, as the worst case) of 
position sensor.  

VII.  CONCLUSION 
 Using the magnetic field to levitate a steel ball, the Magnetic 
Levitation System as a teaching aid enables the theoretical study and 
practical investigation of basic and advanced approaches to control 
of nonlinear unstable systems. The simple structure of nonlinear state 
estimator, proposed in this paper, is verified by the computer 
simulation. In the suggested observer the observation error vector is 
multiplied by the observer gain matrix which is obtained after a 
special coordinate transformation map. Note that finding a suitable 
nonlinear transformation requires the precise knowledge of the 
system nonlinear dynamics.  
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