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Controlling the Rikitake’s nonlinear system with chaotic 
behaviour by means of synchronization 

Radoslav H. Radev1, Elena D. Monova2 and Dragomir P. Chantov 3 
 

Abstract – In this paper the problems about relay-based 
control of the nonlinear Rikitake’s system are discussed. The 
control laws are designed on the basis of the necessary condition 
of the maximum principle. These laws are formed by the state 
space variables of a second (response) system, which is 
synchronized with the first (drive) system. The results are 
confirmed by computer simulation. 
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I. Introduction 
The chaos is а special type of dynamical behaviour of 

systems, possessing a number of specific features which in 
essence determine the concept chaos. These features are [3, 
10]: 
- strong sensitivity to tiny variations of the initial conditions 
and/or the system parameters which means that small 
differences in the initial conditions lead to substancial 
differences in the system behaviour;  
- the ‘motion’ of the system in the state space is performed 
over orbits, which are restricted in a definite area, possessing 
at the same time a positive Lyapunov exponent; 
- these systems have continuous frequency spectrum.  
A lot of processes in physics, chemistry, technics, biology, 
medicine, ecology and economics possess such behaviour 
[10]. 

The mathematical model of these systems is a system of 
nonlinear differential equations of the type:  

( )pxfx ,= ,                         (1.1) 
where: 
- 

nℜ∈x is the state vector; 

- ( ) ( ) ( ) ( )[ ]Tn21 ,,...,,,,, pxpxpxpxf fff=  

- 
mℜ∈p  - is the vector of the variable parameters for which 

the nm ≤ condition is satisfied. The change of at least one of 
the vector elements leads to bifurcations in the system. 
It is a characteristic feature of the systems with chaotic 
behaviour that the linearized system is unstable in all 

equilibrium points 
∗
ix , which are the solution of the equation: 

( ) 0pxf =∗ , .                     (1.2) 
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1.1. Synchronization of chaotic systems. 
The synchronization is a process [1], when two or more 

connected systems, equivalent or not by structure and 
parameters, adjust their dynamics to each other. In actual fact 
this phenomenon is reproducing the state of one of the 
systems by the other on the basis of information received 
through a connecting signal. 

When dealing with synchronization, two systems drS  

(drive) and respS  (response) are considered: 

( )xfx =:drS                             (1.3) 

and 

( )xfx ~~~
resp =:S ,                          (1.4) 

with the corresponding solutions ( )( )00 t,t,t xx  and 

( )( )00 t~,t,t~ xx , where 1nℜ∈x  и 2n~ ℜ∈x  and initial 

conditions ( )0tx  and ( )0t~x . 

For 21 nn =  and ( ) ( )xfxf =~~
, the systems respS  and 

drS  are identical. 

The solutions ( )( )00 t,t,t xx  and ( )( )00 t~,t,t~ xx  of the 

drS  and respS  systems with initial conditions ( )0tx  and 

( )0t~x  are asimptotically synchronized in relation to a chosen 

function tQ , if 

( ) ( )[ ] 0lim =
∞→

t~,tQtt
xx .                      (1.5) 

For identical systems the function most frequently is chosen 
of the type  

( )tQt e= ,                                (1.6) 

where 

( ) ( )( ) ( )( )0000 t~,t,t~t,t,tt xxxxe −=       (1.7) 

is the difference between drS  and respS . 
Generally the synchronization of chaotic systems is realized 

by two methods – through one-way and through two-way 
coupling. In case of one-way coupling the first system is free 
and it leads the second, which tracks the dynamics of the first, 
while in the case of two-way coupling the influence over the 
two systems is mutual. 

In the case of one-way coupling of two autonomous 
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identical systems, which are the subject of the present 
investigation, most frequently a decomposition of the system 
to two subsystems (Pecora-Carroll method) is searched [8]: 

( )
( )




=
=

,,
,,

:
2122

2111

xxfx
xxfx

drS                      (1.8) 

and 

( )
( )




=
=

,~,~
,~,~~

2122

2111:
xxfx
xxfx

respS                       (1.9) 

where lℜ∈1x , mℜ∈2x , lℜ∈1
~x , mℜ∈2

~x , 

nlm =+ . The state subvector 1x  of the first subsystem of 

drS  is applied to the second subsystem of the system respS for 
achieving synchronization. 

1.2. Lyapunov exponents. 
A quantitative evaluation of synchronization of chaotic 

systems is carried out on the basis of the Lyapunov exponents 

iλ  [1, 3, 8, 9], which are an analogue to the eigenvalues of 
the linear systems. These exponents are a measure of the 
convergence or the divergence of the nonlinear systems. A 
main index for the presence of chaos is the maximum 
Lyapunov exponent, which is positive. In general case there is 
no analytical solution for computing the maximum Lyapunov 
exponent and it is calculated by means of a numerical 
procedure by the following expression:   

( )
( )0

lim1lim
0)( e

e t
t tet →∞→

=λ .                   (1.10) 

By the Pecora&Carroll synchronization method 

( ) ( ) ( )ttt 22
~xxe −=                      (1.11) 

is the difference between drS  and respS  with initial 
conditions 

( ) ( ) 00~0 22 ≠− xx . 

The evaluation of the decomposition-type synchronization 
is carried out by the so called conditional Lyapunov exponents 
(CLE), which are calculated by (1.10) with the substitution of 
the difference (1.11). 

II. Control Synthesis 
A relay based control of the type: 

( ) uBpxfx += ,                         (2.1) 

has to be determined for the system (1.1). 
The Hamilton function for the system (2.1) is: 

( ) ( ) ( )[ ]uttu Bpxfλλx +=
∆

,,,, TH          (2.2) 

and according to the maximum principle the following 
conditions for the n -dimensional auxiliary vector 
( ) ( ) ( )[ ]T1 ttt nλλ=λ  have to be satisfied: 

1. For each t (with the exception of the interruption points 
of f  and u ) the Hamiltonian function takes a maximum over 
the optimal trajectory, i.e.:  

0=
∂
∂

u
H

.                               (2.3) 

2. For each t (with the exception of the interruption points 
of f  and u ) the following condition for the vector ( )tλ  over 
the optimal trajectory is satisfied: 

( ) ( )
x

λxλ
∂

∂
−= ,u,

dt
td H

.                   (2.4) 

3. If there is no limitation for the duration of the transient 
process an additional condition is imposed: 

( ) 0=λx ,u,H .                         (2.5) 

It follows from (2.3) that the control is relay based of the 
kind: 

( )xisu sign= ,                        (2.6) 

where with taking to consideration of (2.4) and the necessary 
condition for a nonzero vector λ , the control function over 
the i-th input ( )xis  for third-order systems is obtained from 
the following equation: 

( ) ( )

( ) ( ) ilik

x
f

x
f

ff

i

k

i

l

kl

≠≠=



















∂
∂

−
∂
∂

−
andfor0det xx

xx

  (2.7) 

and it has the form:  

( ) ( ) ( ) ( ) ( )
0=

∂
∂

−
∂
∂

=
i

k
l

i

l
ki x

f
f

x
f

fs
x

x
x

xx .  (2.8) 

It is accepted that the control function (2.8) is formed from 
the state variables of respS  and the control is active when the 

system trajectory enters a given region iL in the state space 
(as shown on fig.1) for which the following condition is 
satisfied:   

AL ∈∈ ii
*x .                    (2.9) 

A  is the system attractor and the region iL  is a sphere 

{ }Ri
n

i ≤−ℜ∈= *: xxxL       (2.10) 

around the equilibrium point *
ix  with a radius R , which has 

to be such that the condition  
∅≠∩ALi               (2.11) 

to be performed. 
This is the so called local control [9]. 
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Fig. 1.

III. Rikitake’s system 
The Rikitake’s system [4] represents a model of a double-

disk dynamo system and is described by the following 
equations:  

( )
,

,
,

213

1322

3211

xxbx
xAxxx

xxxx

−=
−+−=

+−=
µµ

µ
             (3.1) 

where ( )22 −−= KKA . 
The system attractor is 

shown on fig.2. The system 
has two equilibrium points 
with the following 
coordinates: 

















±
±

= −

2

1*
2,1

K
bK

bK

µ
x , (3.2) 

which for parameter values 1,2,1 === bКµ  are 
















±
±

=
4

5.0
2

*
2,1x . 

The Jacobian of the system (3.1) in the equilibrium points 
*
jx  is 

















−−
−−

−
=

0*
1

*
2

*
1

*
3

*
2

*
3

jj

jj

jj

j

xx
xAx
xx

µµ
µ

A .      (3.3) 

Evaluation of the possibility to drive the system into 
*
jx  is 

made by the rank of the matrix 

[ ]2
jijiii ABABBQ = .           (3.4) 

The analysis shows that  

3rank =iQ     ji and∀ ,               (3.5) 

from which follows that the system is completely controllable 
in the equilibrium points.  

The control functions for the i-th input control by taking 
into consideration the state variables of respS  are: 

( ) ( ) 2
231 xAxbs µµ −−=x  

( ) 2
132 xbxs µ−=x  

( ) ( )2
221

2
13 xxAxxs −−= µx  

The Pecora&Carroll synchronization method is proposed 
for the Rikitake’s system. Table 4.1 shows the three possible 
decompositions of the system by the given method as well as 
the calculated according to [12] conditional Lyapunov 
exponents. 

Табл. 4.1. 
 

Controlled system 
Connec-

ting  
variable 

Conditional 
Lyapunov 
exponent 

( )
213

1322

~~

~~~

xxbx

xAxxx

−=

−+−= µµ
1x  5021 ., −=λ  

213

3211

~~

~~~

xxbx

xxxx

−=

+−= µ
 2x  5021 ., −=λ  

( ) 1322

3211

~~~

~~~

xAxxx

xxxx

µµ

µ

−+−=

+−=
3x  

7641 .−=λ
 7622 .=λ

 
Synchronization of the response system with the drive 

system is only possible with 1x  and 2x  as driving variables 
since one of the conditional Lyapunov exponents in the case 
of 3x  as driving signal is positive. 

III. Experimental results 

Synchronization with 1x  and 2x  as driving variables is 
done. A control function is then applied to the first, to the 
second and to the third input of the original system using the 
state variables of the synchronized response system. The 
following figures show the errors (the differences) by 
synchronization with 1x  and 2x  and control over the three 
inputs. 
- First-input control, synchronization by 1x . 
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Fig. 2 
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Fig. 3 

- First-input control, synchronization by 2x . 
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Fig. 4 

- Second-input control, synchronization by 1x  
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Fig. 5 

- Second-input control, synchronization by 2x  
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Fig. 6 

- Third-input control, synchronization by 1x  
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Fig. 7 

- Third-input control, synchronization by 2x  
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Fig. 8 

 

III. Conclusion 

In this paper control through synchronization for the 
Rikitake’s system is proposed. The investigations made show 
that this control in essence little differs from the control 
through direct use of the state vector. 
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