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Abstract – This paper proposes input-output based discrete-
time disturbance estimator structure, in which conventional 
passive digital filters are replaced with an active digital sliding 
mode controlled subsystem. In ideal sliding mode, complete 
disturbance rejection occurs and plant output follows nominal 
system. Estimator robustness is actively gained by providing 
sliding mode existence conditions. Simulation results show 
effectiveness of the proposed disturbance estimator. 
 

Keywords – Disturbance estimator, external disturbances, 
model uncertainties, sliding mode, robustness. 
 
 

I. INTRODUCTION 
 

In almost every control environment the presence of 
external disturbances and model uncertainties is inevitable, 
which has significant impact on the performance of a 
controller. Hence, the performance of a control system is 
evaluated through its disturbance rejection ability and 
robustness to model uncertainties. 

One approach in handling external disturbances and model 
uncertainties, which is usually regarded as an equivalent or 
generalized disturbance, is an employment of disturbance 
observers. The concept of disturbance observer is that the 
disturbance action can be efficiently compensated by feedback 
of the observed disturbance. Thus, disturbance observer 
enables real plant to behave like the nominal plant. 

Generally, there are two methods in a disturbance observer 
design. The first is the design of a state space disturbance 
observer, which requires disturbance model to be employed in 
an augmented state observer. This approach is suitable for 
simple disturbances, such as bias and periodic disturbances. It 
is hardly used for arbitrary disturbances. However, it is 
proposed in [1] a design of discrete-time robust control 
system, containing a state space disturbance observer, in 
which modeling of disturbances is not required. 

The other method of a disturbance observer design is based 
on transfer function approach. Conventionally, the disturbance 
observer is designed using inverse dynamic of a plant, [2]. 
Disturbance observer efficiency is dependent on the design of 
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the so-called Q filter, which is essentially utilized for the 
causality of the observer. Q filter determines robustness and 
disturbance rejection performance, which is proved to be 
contradictory requirements, [3]. 

This approach may be viewed from the aspect of internal 
model concept. The IMPACT (Internal Model Principle And 
Control Together) structure incorporates both internal models 
of nominal plant and disturbances, in order to obtain rejection 
of known class of disturbances, robustness to parameter 
perturbations and desired dynamic response. Compensation of 
an arbitrary external disturbance may be obtained by on-line 
adaptation of disturbance internal model, [4]. A simplified 
IMPACT controlling structure [5] may be treated as a 
disturbance estimator. 

As a nonlinear robust control strategy, which is 
theoretically insensitive to model uncertainties and external 
disturbances, variable structure systems (VSS) with their 
associated sliding mode behavior are very attractive for 
perturbed system control. Sliding mode control (SMC) 
essentially utilizes a switching control law to drive the state of 
the concerned system to a predefined sliding surface in the 
state space and to maintain the sliding motion along the 
surface into the equilibrium point [6]. Due to digital 
realization of VSC algorithms, analysis of discrete-time 
sliding mode control (DSMC) systems shows that in general 
only quasi-sliding modes can be achieved, i.e., the system 
trajectories are in a small bounded vicinity of the sliding 
surface. 

Among many versatile applications, SMC has found its role 
in a system state observation [6], and thereby in disturbance 
observers. Discontinuous disturbance estimators, where VSS 
equivalent control theory is employed in disturbance 
estimation, are proposed in [7,8]. 

This paper proposes sliding mode controlled input-output 
based discrete-time disturbance estimator. Conventional 
passive digital filters responsible for estimator robustness and 
disturbances rejection are replaced with an active DSMC 
structure, due to its emphasized robustness property. If an 
ideal sliding mode is established, complete disturbance 
rejection occurs and plant output follows nominal system. 
Estimator robustness (stability) against model uncertainties is 
actively gained by providing sliding mode existence 
conditions. Thus, robustness and good external disturbances 
rejection property are no longer contradictory requests. 
 
 

II. DSMC BASED DISTURBANCE ESTIMATOR 
 

Consider a single-input single-output continuous time 
dynamic system described by the state space model 

Input-output based discrete-time disturbance 
estimator using sliding mode approach 
Boban Veselić1, Čedomir Milosavljević2 and Darko Mitić3 



490 

  ( ) ( ) ( ) ( )tvtutt jbAxx ++= , ( ) ( )tty cx= , (1) 

where the state nRx ∈ , the control 1Ru ∈ , the external 
disturbance 1Rv ∈  and the output 1Ry ∈ ; A , b , j , c  are 
the constant matrix and vectors of appropriate dimensions. 
The discrete time representation of the dynamic system (1) is 
obtained by applying u  through a zero-order-hold, 
  ( ) ( ) ( ) ( )kkukk wfExx ++=+1 , ( ) ( )kky cx= , (2) 
where T  is a sampling period and 

  TeAE = , ∫=
T

t te
0

d bf A , ( ) ( )∫ −+=
T

t ttTkTvek
0

djw A . (3) 

By assuming zero initial conditions, Z-transform of (2) yields 
  ( ) ( ) ( ) ( ) ( )zzzUzzY WEIcfEIc 11 −− −+−= . (4) 
Using Eq. (4), the system output y  in terms of the control u  
and the external disturbances d  may be expressed as 
  ( ) ( ) ( ) ( )kdkuzGky += , (5) 
where 
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The polynomials ( )1−zA  and ( )1−zB  are assumed to be stable 

and relatively prime, where 1−z  denotes unit-delay operator. 
The main concept is to compensate action of the equivalent 

disturbance, consisting of model uncertainties and external 
disturbance, by feedback of the observed equivalent 
disturbance, and thereby to obtain nominal model behavior. 
Consider the control structure proposed in Fig. 1., which is 
composed of the real plant (5) and the disturbance estimator in 
the local loop. The extraction of the equivalent disturbance q  
in the disturbance estimator is obtained using discrete transfer 
function of the nominal model ( )zGn . The mismatch between 
the real plant and nominal model inevitably exists due to 
uncertainties of the plant parameters. The real plant may be 
reliably described by 
  ( ) ( ) ( )( )zGzGzG n δ+= 1 , (7) 
where its perturbation is limited by the multiplicative bound 
of uncertainties ( ) ( ) [ ]TeG Tj /,0, πωωγδ ω ∈≤ . According to 

Eq. (7) and Fig. 1., the extracted equivalent disturbance is 
  ( ) ( ) ( ) ( ) ( )kuzGzGkdkq kn δ+= . (8) 

In order to improve disturbance estimator robustness, an 
active controlling structure is employed instead of 
conventionally used passive digital filter. A reasonable choice 
is a DVSC system due to its emphasized robustness property. 
Signal q̂  is an estimation of the compensated equivalent 
disturbance portion. If DSMC ensures qq =ˆ (an ideal sliding 
mode occurs), the control signal may be described as 

( ) ( ) ( )kqzGku nsm
1−= . It can be easily proved that the system 

output behaves as a nominal model ( ) ( ) ( )kuzGky n= . Since 
DSMC systems enables only quasi-sliding mode, certain but 

small bounded error between q  and q̂  will exist, whose value 
depends on the employed control algorithm. 
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Fig. 1. Structure of DSMC based disturbance estimator 

 
Robustness against model uncertainties is actively gained 

by providing sliding mode existence conditions. Thus, 
robustness and good external disturbances rejection property 
are no longer contradictory requests. From the control design 
aspect, the proposed method of equivalent disturbance 
compensation may be treated as a discrete-time tracking 
control problem with measurable but unknown in advance 
reference signal ( )kq . Since digital controller steers a nominal 
model not a real plant, all state variables are available. This 
enables variety of DSMC algorithms to be utilized, which 
successfully handle this control task. 
 
 

III. DSMC DESIGN 
 

Robust chattering-free DSMC algorithm [9] based on state-
space approach is chosen for the digital sliding mode 
controller. Controller design is demonstrated on the second 
order system. Consider a discrete-time nominal model. 
  ( ) ( ) ( )kukk smfExx +=+1 , ( ) ( )kky cx= , (9.a) 
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It is more convenient to consider tracking error dynamics, 
which may be obtained using coordinate transformation. A 
new state space vector ( ) [ ]T

21 zzkz =  is introduced, defined 
as ( ) ( ) ( )kxkqkz 11 −= , ( ) ( ) ( )1112 −−= kzkzkz , ( ) ( )kxkq 1ˆ = , 
which has to be driven to zero by the control force ( )kusm . 
The discrete-time model (9) is transformed to 

 

( ) ( ) ( ) ( ) ( ) ( )

.,
1
1

,,,
01
0

,11

11

11

12

12

1

1

11

11

2









−
−

=







=









−
−

=







−
−

=







−

=

+++++=+

e
e

e
e

f
f

e
e

kqkqkxkukk

xx

smxx

pg

hfE

pghfzEz

 (10) 

The basic sliding mode control philosophy comprises 
global stabilization of the control system by steering system 
states onto predefined sliding surface, and maintaining 
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subsequent motion along that surface into the state space 
origin. Let the switching function be 
  ( ) ( )kks σz= , [ ]1σ=σ  (11) 
Control law ( )kusm  should be determined which provides the 
desired motion constrained into the quasi-sliding domain, 
defined as small bounded vicinity of the sliding line ( ) 0=ks . 
Sliding line parameter σ  defines sliding mode dynamics, that 
is, compensation dynamics of the equivalent disturbance. An 
adequate adoption of the slope σ  should provide stable 
system eigenvalues with desired dynamics. 

According to Eqs. (11) and (10), system motion toward the 
sliding line is presented by 

  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .]1
[1

2 kqkqkx
kukksks smxx

pgh
fzIEσ

++++
+−+=+

 (12) 

Let the control signal be in the form 

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ,},minsgn]1

2[{1
2

Tkskskq

kqkxkku x
x

sm

α+−−

+++−−=

g

gphzIEσ
σf  (13) 

under constraint 0≠xσf . Control signal has two modes. The 
first mode, nonlinear with respect to ( )ks  and active outside 
the region ( ) Tks α< , ensures reaching the region in a finite 
number of steps; afterwards, the second linear mode provides 
reaching the quasi-sliding domain in one step. Thus, a 
discrete-time sliding mode is achieved employing smooth 
control signal, [9]. 

To prove that the proposed control law (13) ensure above 
described motion, and to determine the related switching gain 
as well as the width of the quasi-sliding domain, the following 
two supportive lemmas are given. 

Lemma 1, [10]: System trajectories described by 
  ( ) ( ) ( ) ( )( )ksTkfksks sgn11 α−++=+  (14) 
where ( )kf  is some bounded function and ( ) Tkf /1+>α , 

Nk ∈∀ , will reach region ( ) Tks α<  from any initial state 
( )0s  in finite number of steps. 
Lemma 2, [10]: If ( )tq is an arbitrary smooth function with 

bounded time derivative ( ) Rtq ≤ , then the following discrete 

time inequality holds ( ) ( ) ( ) RTTkTqkTqTkTq 222 ≤−+−+ . 
The designed discrete time variable structure controller is 

summarized by the following theorem. 
Theorem: Consider the discrete time system (10) under the 

action of the control signal (13), where the switching function 
is chosen as (11). If the switching gain satisfies 
  σgTR2>α , (15) 
the discrete-time quasi-sliding mode will arise from any initial 
state in a finite number of steps in the domain defined by 
  ( ) σgRTks 221 ≤+ . (16) 

Proof: Since the system motion starts outside the region 
( ) Tks α< , by virtue of Eq. (13), Eq. (12) becomes  
( ) ( ) ( )( ) ( ) ( ) ( )[ ]121sgn1 −+−++α−=+ kqkqkqksTksks σg .(17) 

Under condition (15), according to lemmas 1 and 2, system 
trajectories (17) will reach the region in a finite number of 

steps. Governed further by the linear phase of the control (13), 
system motion is described by 
  ( ) ( ) ( ) ( )[ ]1211 −+−+=+ kqkqkqks σg , (18) 
indicating that the quasi-sliding domain is entered in the next 
step, whose width (16) is proved by (18) and lemma 2. ڤ 

It is evident from (16) that ( ) 01 =+ks  if ( ) 0=tq , implying 
that the proposed sliding mode based disturbance estimator 
completely rejects step and ramp like equivalent disturbances. 
In all other cases, when 0≠R , it provides ( )2TO  accuracy. 
 
 

VI. SIMULATION RESULTS 
 

The effectiveness of the proposed DSMC based disturbance 
estimator has been investigated by simulation. The plant is a 
DC motor, whose continuous-time model (1) is defined with 
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The nominal plant (model) parameters are: Ω= 1rnR , 0=nB  

HLrn
3105.2 −⋅= , 2310267.3 kgmJ n

−⋅= , 33.0=nk . Using 

the discrete-time model (2) with the sampling time sT 310−=  
the following nominal discrete transfer function is obtained 
according to Eqn. (6) 

  ( ) ( )
21

11

67032.065934.11
0155257.00177384.0

−−

−−

+−
+=

zz
zzzGn . (20) 

The plant is subjected to parameter and external disturbances. 
Load torque, shown in Fig. 2., acts as an external disturbance. 
Model uncertainty, i.e., the mismatch between the real plant 
and the nominal model, is defined by the following 
values: 3.1⋅= rnr RR , 2.1⋅= rnr LL , 2⋅= nJJ , 1.1⋅= nkk . 
Consequently, the real plant discrete transfer function is 

  ( ) ( )
21

11

648344.064289.11
00696901.000805062.0

−−

−−

+−
+=

zz
zzzG . (21) 

Parameters of the digital sliding mode controller have been 
selected as: 10=α , 10=σ . The main control loop contains 
linear digital controller ( ) ( ) ( )11 1/985.01 −− −−= zzzGr , which 
involves an integral action. The controlled DC motor is 
subjected to a step angular velocity reference. 

Step responses of the controlled systems with and without 
disturbance estimator are shown in Fig. 2, as well as the load 
torque. Due to the integral action of the main loop controller, 
the uncompensated system output ( )ty0  has zero error only in 
the section of step like disturbance action. In other sections, 
system error is significant. The compensated system output 

( )ty  demonstrates an excellent disturbance rejection 
performance. 

According to the enlarged scale of the switching function 
plotted in Fig. 3., it is confirmed the complete rejection of step 
and ramp like disturbances by the proposed disturbance 
estimator. The deviation from the zero value in other sectors is 
significantly small. 

Error signal of he compensated system is shown in Fig. 4. 
in the enlarged scale also. It may be noticed that the system 
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has no error in the case of step, ramp and parabolic like 
disturbance action. This is a result of the combined action of 
the disturbance estimator and the main controller with integral 
action. 

 
Fig. 2. Step responses of uncompensated system ( )ty0 , compensated 

system ( )ty ; and external disturbance ( )tM o . 

 
Fig. 3. Switching function ( )ts . 

 
Fig. 4. Error signal ( )te  of the compensated system. 

 

V. CONCLUSION 
 

The proposed input-output based discrete-time disturbance 
estimator structure, where conventional passive digital filters 
are replaced with active DSMC subsystem, inherits 
recognized sliding mode properties with respect to internal 
and external perturbations. Estimator robustness against 
model uncertainties is actively gained by providing sliding 
mode existence conditions. Thus, robustness and good 
external disturbances rejection property are no longer 
contradictory requests. 

From the control design aspect, the proposed equivalent 
disturbance compensation method may be viewed as a 
discrete-time tracking control problem with measurable but 
unknown in advance reference signal. Sliding mode digital 
controller governs a nominal model not a real plant, where all 
state variables are available, offering variety of DSMC 
algorithms to be utilized. The applied state-space DSMC 
algorithm enables complete rejection of step and ramp like 
equivalent disturbances. In all other cases it provides an 

( )2TO  accuracy. 
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