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Calculating the Thickness of Thin Films, Produced by 
Different Kinds of Evaporators  

 Dimiter D. Parashkevov1 
 

Abstract - The thickness uniformity of thin films, deposited on 
different substrates is very important with a respect to the 
quality of the layers and the output of the technological process. 
It has to be proofed, when a  new vacuum equipment is first set 
in operation. The present work predicts the thickness of the 
produced layers using some idealized models and   shows   the 
way for calculating it by a real sputtering process.   
 
Keywords – cathode sputtering, mathematical models, NiCr, 
erosion profile. 
 
 
 

I. INTRODUCTION 
 

A standard B-55 vacuum plant is supplied additionally with 
a magnetron sputtering system in order to produce NiCr 
resistive layers. We have to consider according to the new 
arrangement in the chamber and some technological 
parameter – for instance the sputtering rate some models, 
which are suitable for calculating the thickness distribution of 
the film over the substrate. 

 
 

II.BASIC CONCEPTS AND QUANTITIES 
 

We suggest a cos law of distribution for the sputtered 
atoms. They reach the substrate without hindrance and all of 
them condense there. 

A basic concept in the models is the parallel disposition 
between the motionless substrate and target. 

The main quantities we use in our considerations are shown 
on Fig.1. Here denote the symbols the following: dAe – the 
elementary emitting surface, dAr – the elementary surface on 
the substrate, ϕ - the sputtering angle, θ - the condense angle, 
α - the angle between the Y axis and the radius vector to dAe, 
h – the distance target-substrate, s – radius, r – the distance 
between dAe and dAr, l – the distance between the centre of 
the substrate and the point, where the thickness d is 
calculated.  

 
 
III.MODELS FOR CALCULATING LAYER’S 

THICKNESS 
 

A.SMALL SURFACE EVAPORATOR 
 

The thickness of the layer de from the small emitting surface 
dAe on an infinite small surface dAr of the substrates by 
randomly oriented to each other substrate and target is given 
with [1]:  
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where ρ is the density of the sputtered material.  The 
meaning of m1 is the mass of   the sputtered material, 
produced from one sputtered surface unit in one second, that 
is so to say the mass velocity (intensity) of sputtering. 

Assuming a plain substrate, planar to the emitting surface 
of the target we get (Fig. 1): 
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We can get the distribution of the final thickness d of the 
layer over the substrate when we integrate (3): 
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          Fig.1: Geometric arrangement substrate-sputtering target 
 
 
According to the relationships between the quantities on 

Fig.1 we get: 
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 ℑ  means here: 
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Substituting: 
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we get for ℑ : 

               ( ) I
ba

d
b

.1
cos.1

1 2

0
222 ∫ =

−
=ℑ

π

α
α

              (9) 

The integral I  is a sum of four integrals, two of the kind  I′ 
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 We unite all them in one integral within the same limits and 
after some transformations we receive: 

                          
( )2

3
21

2

a
I

−
= π

                                  (10) 

  Substituting (10) in (9) and using (8) we get for ℑ : 
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The expression (12) is for the case of a small surface 
evaporator.  

Further on the calculation for a certain point of the substrate 
of the full (final) thickness of the layer d depends on: 

• The kind of  the evaporating source 
• The dependency m1 = m1(s,t) 

 
B.THIN RING EVAPORATOR 

 
An evaporator in the form of a thin ring with radius s is 

considered. Assuming m1= const(t) and m1 ≠ m1(s), we 
receive from (12) after double integrating: 
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rM here means the total evaporated mass from the thin ring 
evaporator. 
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 C.DISK EVAPORATOR 

 
The same procedure in the case of a disk evaporator    by 

the same conditions (m1= const(t) and m1 ≠ m1(s) gives for d  
the expression:                                                     
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In (15) dM  stands for the total amount of the sputtered mass 
from the disk: 
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IV.REAL EXPERIMENTAL MODEL 

 
The equations (14) and (16) show, that the sputtering rate 

m1 is assumed to be invariable during the whole time of 
evaporation - τ . This is reasonable when we keep up a 
constant power of the generator. When we calculate d in the 
case of a thin ring evaporator (13) or a disk evaporator (15), 
we regard m1 as a constant over the whole surface of 
evaporation as well. Otherwise m1 would take part in the 
integration over s. 

Actually m1 varies over the surface of the evaporator. The 
real dependence m1 = m1(s) is connected with the concrete 
technological equipment and the kind of the target.  

A good proof for the above mentioned are the erosion 
profiles of long used targets (cathodes).  Their erosion 
surfaces repeat the dependence m1 = m1(s) and are not ideal 
responding to the models B and C. 

The main interest in our experiments was in the thickness of 
the deposited resistive films over the substrate. They were 
produced by sputtering a NiCr (Ni:Cr = 80:20) target. After a 
long time of sputtering the cathode looks like this shown in 
Fig. 2. 

 
Fig. 2: The view of a NiCr target after a long use, mm.10 
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When new the target is a regular disk with φ  = 76 mm, h = 
6 mm.  

The sputtering profile of NiCr target as a result of 
measurements and interpolation is shown as curve 1on Fig. 3: 

 

  
 
Fig. 3: Measured erosion profile – 1 and fitting curve to it – 2 of a 

long used NiCr target 
 
 

It can be seen from Fig.3, that the profile is sharp with a 
minimum by distances ± 20 mm from the centre of the target. 
The edges of the target are practically not sputtered, but the 
centre is sputtered with some little rate. 

The fitting curve (Fig. 3, curve 2), witch corresponds best to 
the measured profile can be found with the help of an 
appropriate software program. We have used TableCurve2d 
program to reveal the analytical form of the dependence 
m1(s). So we got for m1 a function of a kind: 

        m1(s) = (a + b.s + c.s2 + d.s3 +e.s4)-1                        (17), 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where: 
a = -1.0284864, b = -1.715905.e-6, c = 0.0036083349, 

                 d = 4.3724109.e-9, e = - 4.3472891.e-6                    (18) 
 The integral, which has to be solved in our case is: 
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In the last equation m1(s) comes from (17), the coefficients in 
it from (18), h and l are technological parameters. Equation 
(19) can be numerically calculated with a suitable program, 
for example with the mentioned TableCurve. 
 
 

V.CONCLUSIONS 
 

In the present work we consider some idealized models for 
calculating thickness of sputtered layers. In the reality we 
can’t ignore the influence of the different rate of evaporation  
over the target on the thickness distribution. A model which 
takes into consideration this different sputtering rate is 
proposed. 

A comparison between calculated and experimental results 
for the layer’s thickness distribution over the substrate using 
different models will be a subject of an other work [2]. 
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