

533

ISCAS-85 Netlist Translator into VHDL Code
Neša P. Tomić1 and Mile K. Stojčev2

Abstract – Benchmark circuits are mainly intended to support
the research in the area of high-level automatic test pattern
generation during production of VLSI ICs. For ease of
development of new test tool, the benchmarks have to be
standardized both in term of description styles and languages.
The VHDL language has been adopted as one of the standard for
description of electronic circuits. ISCAS-85 are the most popular
benchmark circuits used for performance evaluation and testing
of VLSI ICs, but they are described in a netlist format which is
inconvenient for CAD tools. In this paper we describe an
algorithm for ISCAS-85 benchmark circuit netlist translation
into VHDL code.

Keywords – Benchmark, ISCAS-85, VHDL, Translator.

I. INTRODUCTION

Benchmarks are important vehicles that let industry and
academia to develop new tools, compare and contrast different
methodologies, and research new algorithms and techniques
[1]. During the last thirty years, there have been many
attempts to create and use neutral benchmarks for tool
evaluation and comparison.

We will define here, benchmark as a standardized problem
(circuit or circuit segment) used to compare performance of
different tools and algorithms in term of speed, effectiveness,
and quality of the result [2]. Typically, a benchmark set
consists of a collection of circuits in a common format, which
attempt to represent a range of problems for evaluating
algorithms and tools within an important problem domain [3].

Nowadays, several benchmark sets are widely used. Among
them, ISCAS-85, ISCAS-89, ITC’99, and Politecnico di
Torino, are the most popular. In this paper we will focus our
attention to ISCAS-85, especially to conversion its netlist into
VHDL code, because these benchmarks represent a wide
variety of problem domains and are by far the most frequently
cited of all benchmarks [3].

Namely, as designers we will use reverse engineering
approach in order to determine system specifications, output
functions, or other design characteristics from an existing
implementation, in a form of VHDL code, for a given set of
benchmark circuits.

ISCAS-85 benchmark set of circuits are industrial designs
whose functions and high-level designs have not been
published, both for confidentiality reasons and to allow them
to be viewed as random logic circuits with no significant high-

level structure [4]. In this way, instead of using ISCAS-85
netlists, we will use corresponding VHDL codes, which allow
us better understanding of benchmark circuit’s hardware
structure.

The rest of the paper is organized as follows: Section 2
gives a short overview of benchmark circuit types. Section 3
deals with ISCAS-85’s netlist format example. In Section 4
the proposed algorithm concerning ISCAS-85 to VHDL code
translation is given. Finally, Section 5 is Conclusion.

II. OVERVIEW OF POPULAR BENCHMARK SETS

In the sequel, we will describe briefly some of the most
popular benchmark sets.

ISCAS-85: consists of collection of 10 benchmarks
contributed by the number of individuals and organizations
over a period of 20 years. These benchmark circuits are well-
defined, high-level structures and functions based on common
building blocks such as MUXs, ALUs, decoders, counters, etc
[4].

ISCAS-89: These are a set of 31 digital sequential circuits.
Each circuit is described in two files: a generic gate-level
netlist and a list of equivalence-collapsed faults. A simple
translator is included to read/write the netlist. There are no
schematic diagrams [5].

ITC’99: This set of benchmarks provides a realistic
example circuits to stress current automatic test-pattern
generation (ATPG) algorithms, to provide impetus for the
development of new automatic test-pattern generation and
design for testability (DFT) algorithms, and to encourage
research into fundamental DFT problems for large, complex
designs [3]. They are written in either of two hardware
description languages: Verilog or VHDL.

Politecnico di Torino: These high-level benchmarks are
represented in synthesizable register transfer level (RTL). For
their description VHDL is used.

Analog and mixed signal: This set currently include
amplifier, filters, an analog/digital converters, PLL, switches
and additional circuits that can be added to the set [7].

Other useful benchmark sets are available at various
universities and institutes worldwide: Texas Formal
Verification Benchmark, IFIP WG10.5, STEED, etc [3].

III. ISCAS-85 NETLIST FORMAT EXAMPLE

The ISCAS-85 netlist format was never formally
documented, but it becomes viable despite its shortcomings,
since it contains information not present in most other netlist
formats.

The netlist format of a small ISCAS-85, six-NAND-gate
benchmark circuit, known as “c17” [6] is listed below (see

1 Neša P. Tomić is with the Faculty of Electronic Engineering,

Beogradska 14, 18000 Niš, Serbia and Montenegro, E–mail:
nesto@eunet.yu

2 Mile K. Stojčev is with the Faculty of Electronic Engineering,
Beogradska 14, 18000 Niš, Serbia and Montenegro, E–mail:
stojcev@elfak.ni.ac.yu

534

Fig. 1), for which in Section 4, a corresponding VHDL code
will be presented.

As can be seen from Fig. 1 each line consists of several
columns, which are mutually separated by delimiters (space,
tab, new line). Naming of each column with its description is
given in Table I.

* These first five lines are comments.
* The comment character is the "*" (asterisk).
* The comment character may appear anywhere on a
* line and remains in effect until the end of
 * the line is reached.
 1 1gat inpt 1 0 >sa1
 2 2gat inpt 1 0 >sa1
 3 3gat inpt 2 0 >sa0 >sa1
 8 8fan from 3gat >sa1
 9 9fan from 3gat >sa1
 6 6gat inpt 1 0 >sa1
 7 7gat inpt 1 0 >sa1
 10 10gat nand 1 2 >sa1
 1 8
 11 11gat nand 2 2 >sa0 >sa1
 9 6
 14 14fan from 11gat >sa1
 15 15fan from 11gat >sa1
 16 16gat nand 2 2 >sa0 >sa1
 2 14
 20 20fan from 16gat >sa1
 21 21fan from 16gat >sa1
 19 19gat nand 1 2 >sa1
 15 7
 22 22gat nand 0 2 >sa0 >sa1
 10 20
 23 23gat nand 0 2 >sa0 >sa1

21 19

Fig. 1. ISCAS-85 netlist format for c17 benchmark circuit

Table I. Description of column notation
Address Unique number for given node

Name Descriptive string of characters related to the
corresponding node

Type Function performed by a given node (inpt,
and, nand, or, nor, xnor, xor, buff, not, from)

Fanout Number of gates connected to the output of
given node

Fanin Number of nodes which represent inputs to
the given node

Fault(s)

Stuck-at-fault(s) on given node that are
included in the fault set. Possible values are
>sa0 for stuck-at-zero and >sa1 for stuck-at-
one

Three types of lines in the netlist (Fig. 1) can be identified.

The first, so called node line (typical for line 1-Fig. 1), gives
basic information about the node. The second, referred as
fanin line (the first line after node address 10), corresponds to
the list of node addresses that drive inputs for a given node.
This line appears immediately after node line with fanin value

greater than 0. The number of addresses that appear in fanin
line is identical to the fanin number in corresponding node
line. The third type of line is called fanout branch line (the
line with node address 8). This line use similar notation like
node line, except the field type always takes value from, and
information from which address this branch starts. This line
appears immediately after corresponding node line (and its
fanin line).

Each node has fanout value greater than 0, excluding
primary circuit outputs that have fanout value 0.

More details about netlist syntax can be found in [6].

IV. DESCRIPTION OF TRANSLATION ALGORITHM

Usually, when engineers create new design, they use
standard building blocks for which they know functionality
and hardware structure. On the other hand, benchmark circuits
are “anonymous neutral circuits” of unknown functionality,
but they are mainly used for efficient objective testing of the
implemented algorithms. The main disadvantage of ISCAS-85
benchmark circuits is that their descriptions are given in
netlist format. Such format is inconvenient for designers, who
more prefer high-level or schematic circuit description.

Let us note that ISCAS-85 benchmark circuits are complex
circuits with 160 to 3500 gates, 36 to 207 inputs and 7 to 140
outputs. For explanation of the proposed algorithm, without
violating its generality, we have chosen one simple circuit,
primarily due to limited space of this paper.

In order to obtain a descriptive readable format, acceptable
for designer, a code translator has been developed. The
translator accepts ISCAS-85 netlist as input, and generates
VHDL code as output. The program was developed using
Microsoft Visual Basic 6.0.

At the beginning of the program, a start form appears on a
display (see Fig. 2), with command button for input ISCAS-85
netlist file selection (upper command button). This file must
be textual (with .txt extension).

After file has been selected, we can see the message on the
form, which file was chosen.

Fig. 2. Start Form

The translation process starts since the second command
button is pressed (lower command button). After that, the
name for the VHDL code file must be entered, the entity name
for the whole circuit, and the architecture name (software
offers default name as the entity name).

535

Fig. 3. Translator Algorithm

Program reads line by line, recognizes the type of line and
parses data according to text delimiters (tab or space). Empty
lines and lines which start with “*” (comment lines) are not
taken into consideration, and software continues with reading
of the next line. Parsed data are stored in corresponding
dynamic data arrays, where each array represents one column
from the netlist.

When one line is read, fanin and fanout values are analyzed
(see Fig. 3). These values determine the type of line. If the
fanin value is 0, this line represents node which corresponds
to primary circuit input. If the fanout value is 0, than that line
represents primary circuit output. If the fanin value is greater
than 0, program reads the next line, where addresses of nodes,
as inputs of a given node, are specified. These addresses,
together with node address and its fanin number, are stored in
auxiliary dynamic matrix, which is used later for port
mapping.

If the fanout value is n>1, the program reads the n
following lines, that represent nodes as branches from node,
for which fanout value was n. These node addresses are also
used for internal signal generation in VHDL code.

Since all lines from netlist are read, according to data
structure from dynamic arrays, a VHDL code is generated. In
the header of this VHDL code, the list of all gates that appear
in the netlist is cited. After generation of entity definition (all
primary inputs and outputs are identified), created program
begins with architecture definition generation. First of all, the
list with all internal signals is generated (all nodes with fanout
greater or equal to 1). After that algorithm creates port
mapping section (gate inputs connected to other gates outputs)
for each node (gate), according to data structure stored in
auxiliary dynamic matrix. At the end of VHDL code
generation, a final message about successful translation
finalization and location of the generated file (see Fig. 4) is
reported to the designer.

Fig. 4. Final Message

The listing of the VHDL code which correspond to the c17
netlist is presented in Fig. 5.

-- In this circuit the following gates are present
-- and must be added into CAD tool in order to complete
analysis:
--
-- nand2 --> nand with number of inputs 2

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity c17 is
 port (
 1gat_in_port : in STD_LOGIC;
 2gat_in_port : in STD_LOGIC;
 3gat_in_port : in STD_LOGIC;
 6gat_in_port : in STD_LOGIC;
 7gat_in_port : in STD_LOGIC;
 22gat_out_port : out STD_LOGIC;
 23gat_out_port : out STD_LOGIC
);
end entity c17;

architecture c17 of c17 is
signal int_10gat, int_11gat, int_16gat, int_19gat :
std_logic;
begin
 10gat : entity work.nand2(nand2)
 port map (1gat_in_port, 3gat_in_port, int_10gat);
 11gat : entity work.nand2(nand2)
 port map (3gat_in_port, 6gat_in_port, int_11gat);
 16gat : entity work.nand2(nand2)
 port map (2gat_in_port, int_11gat, int_16gat);
 19gat : entity work.nand2(nand2)
 port map (int_11gat, 7gat_in_port, int_19gat);
 22gat : entity work.nand2(nand2)
 port map (int_10gat, int_16gat, 22gat_out_port);
 23gat : entity work.nand2(nand2)
 port map (int_16gat, int_19gat, 23gat_out_port);
end architecture c17

Fig. 5. VHDL code for c17 ISCAS-85 benchmark circuit

According to the VHDL code listed in Fig. 5, the designer

now can draw a schematic of the circuit, analyze its function.
In our case, the schematic of c17 is given in Fig. 6.

536

Fig. 6. c17 Schematic

The generated VHDL code obtained from ISCAS-85
benchmark circuit netlist can be used for testing some other
application specific circuits. In order to realize that analysis, it
is necessary to add all gates cited in the header of created
VHDL code, into the VHDL project, i.e. to give their entity
and architecture description.

V. CONCLUSION

Effective high-level automatic test pattern generation tools
are increasingly needed as an essential element in the quest
for reducing as much as possible the designer work on gate-
level descriptions. One of the crucial parameters for speeding
up and making more effective the design evolution process in
any technical research is the availability of suitable and
meaningful benchmark.

ISCAS-85 are one of the most popular benchmark circuits
used for performance evaluation and testing of VLSI ICs.
Unfortunately, they are described in a netlist format which is
inconvenient for CAD tools and designers themselves. Having
this in mind, in this paper we describe a suitable algorithm for
ISCAS-85 benchmark circuit netlist translation into VHDL
code, which, in our opinion, will be of great benefit for VLSI
IC designer, during the phase of testing and performance
evaluation of their solutions.

REFERENCES

[1] Basto L., “First Result of ITC’99 Benchmark Circuits”, IEEE
Design & Test Computers, Vol. 17, No. 4, pp. 54-59, 2000.

[2] Davidson S., Harlow J., “Introduction: Benchmarking for
Design and Test”, IEEE Design & Test Computers, Vol. 17, No.
4, pp. 12-14, 2000.

[3] Harlow J., “Overview of Popular Benchmark Sets”, IEEE
Design & Test Computers, Vol. 17, No. 4, pp. 15-17, 2000.

[4] Hansen M., Yalcin H., Hayes J., “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering”, IEEE
Design & Test Computers, Vol. 16, No. 4, pp. 72-80, 1999.

[5] http://www.cbl.ncsu.edu/pub/Benchmark_dirs/ISCAS89/DOCU
MENTATION/iscas89.ps.

[6] http://www.cbl.ncsu.edu/pub/Benchmark_dirs/ISCAS85/DOCU
MENTATION/iscas85.ps.

[7] http://www.ee.washington.edu/research/mad/benchmarks/bench
marks.html.

