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The Effects of Interchannel Interference on Optical FSK 
Systems Influenced by Phase Noise 

D. Milić, M. Stefanović 
 

 
 Abstract:- Moments approach is generally considered a 
systematic way to perform analysis of coherent optical systems. 
In this paper, we extend the method to a wider class of systems to 
include the cases where interchannel interference may be 
significant. We derive essential equations in matrix form and 
compare the moments approach with numerical simulation and 
Fokker-Planck approach. To illustrate the results, we apply the 
moments method to two-channel optical heterodyne FSK system 
with dual-filter receiver structure, and evaluate required channel 
spacing to have less than 1 dB penalty due to crosstalk. 
 
 Keywords:- Phase noise, optical communication, envelope 
detection, interchannel interference, frequency shift keying 

I. INTRODUCTION 

 Considerable efforts have been devoted to theoretical 
description of coherent optical systems, in order to account 
accurately for the influence of laser phase noise on the system 
performance. During the past decade, several solutions to the 
problem have been presented in the literature [1-5]. Among 
the solutions, the most widely used are the results of Taylor 
expansion method [1] and the moments approach [3, 4]. 
 There have been previous attempts to include the impact of 
interchannel interference on the FSK system performance, 
using the moments approach [6, 7]. However, potentials of the 
moments approach were not used to the maximum, and the 
results are mostly qualitatively valid. In most cases, the effects 
of time shift between the interfering channels were neglected, 
and only the systems with ideally synchronized channels were 
considered. A comprehensive worst-case analysis of ASK 
systems, which includes the aforementioned effects is outlined 
in [8]. However, the proposed method uses the leading order 
Taylor expansion to account for the phase noise influence, 
together with an approach based on the inverse Fourier 
transform to compute the bit-error rate, as opposed to 
conditional error probability approach [7] which is generally 
more accurate. In this paper, we outline a procedure that 
combines the good sides of both the approaches -the worst-
case analysis of [8], and the conditional error probability 
approach [7]- to yield the results that should be in closer 
agreement with the real system performance. We apply the 
procedure to heterodyne dual-filter FSK receiver, and 
calculate the required channel separation for a two-channel 
system. 

II. MOMENTS EVALUATION 

 Analysis of coherent optical system performance, including 
the effects of interchannel crosstalk, requires the knowledge 
of probability density function (pdf) of the following random 
variable: 
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or -in envelope detection schemes- its squared modulus. 
Random phase processes ϕ(t) and φ(t) are considered 
independent [3] Brownian motions [1] with diffusion 
constants 2π∆ν, del is channel separation and θ is interference 
offset phase - constant over the one bit duration. Using Taylor 
expansion of the interference, the leading asymptotic behavior 
is obtained as [6, 8]: 
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In the above equation, it is convenient to identify the 
interference as a Gaussian random variable with mean r, and 

variance 
( )22 τπ
ντ∆

eld
. Therefore, it is possible to include the 

last term of the previous equation with other Gaussian noise 
contributions, such as shot and receiver noises [6, 7]. 
However, the deterministic interference term r is more 
complicated to account for. 
 
 Let the moments nm,µ̂  of X be defined as 

 [ ]nm
nm XXE=µ ,ˆ . (3) 

where the overbar stands for complex conjugation. Exact 
moments µi,j, of the filtered phase-noisy signal without the 
influence of interference, are known in symbolic form 
[2, 3, 4], and they can be used to express nm,µ̂ , as we will 
show. 
 By introducing the notation X = r + z, where 
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according to Eq. (2), the moments nm,µ̂  are written as: 
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It is convenient to write the equation in the matrix form: 

 T
nmnmnm M 11,11,ˆ ++++ ρρ=µ  (7) 

where mnM ,  denotes the moment-matrix of the random 
variable z, namely: 
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The row-vector kρ  is defined as [ ] kiik r ...,,2,1==ρ , where 
ri are given by: 
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The moments kk ,µ̂  are in fact moments of random variable 
2X  and they are relevant in performance analysis, since the 

dual-filter FSK receiver uses envelope detection. 

 Described procedure may be generalized to yield the 
following result: 
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 The moment-matrix M̂  of the random variable X may 

not be real, as this is obvious from Eqs. (4) and (6). However, 

the moments on the main diagonal, which represent moments 
of the random variable |X| 2, are real. Figs. 1 and 2 illustrate 
the results and their validity. 

 Define: ∑
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the sum of m+1 independent variables |Xi|2 may be obtained 
by the following recurrence approach: 
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Again, the matrix formulation is convenient because the 
recursion process can be replaced by the multiplication of m 
matrices. The matrix equation is expressed as: 
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where ( )
k

mΣζ  denotes the moment row-vector of the sum of 

m variables, defined as: 
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k

iµ̂  is the moment row-vector of a single variable |Xi|2, 

and the matrix kknW ,  is defined as 
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Fig. 1. Probability density functions of the envelope detector output, with and without deterministic interference. Curves are reconstructed 
from the first 12 moments using maximum entropy approach. 

 



601

with elements 

 ( )
( )







>

≤µ





−
−

= −

ij

ij
ji

i
nw

n
ji

ji

,0

,ˆ
1

, . (18) 

By proceeding one step further from Eq. (15), it is easy to 
identify that the moment vector ( )mΣζ  equals the first row 

of the matrix ∏
=

m

i
iW

1
. 

III. APPLICATION TO FSK SYSTEM 

 The moments may be used in a detailed performance 
analysis, as we will show on the FSK system example. We 
consider a receiver model shown in Fig. 3. It is a heterodyne 
polarization control receiver with dual-filter structure. 
Frequency deviation of the incoming FSK signal is considered 
large and the correlation effects between the two receiver 
branches are neglected. IF filtering is performed using 
equivalent integrate-and-dump filters with central frequencies 
tuned to the FSK signal frequencies, and with integration time 
τ. Postdetection filter is a summation device that averages Md 
consecutive detected samples during the bit interval. Shot 
noise is considered the dominant Gaussian noise factor; other 
Gaussian noise contributions can also be easily included in the 
analysis. Under these conditions, the error probability is 
computed as derived in [7] or [9]. 
 We consider a two-channel heterodyne model with low 
intermediate frequency and ideal envelope detection. 
Interchannel interference is therefore the crosstalk from the 
other channel which is separated in the electrical domain by 
the spacing del. The crosstalk has different influence during 
the transmission of binary "0" and "1". When binary "0" is 
transmitted, the crosstalk can never be constructive since its 
squared modulus in the other branch impairs the decision 
variable; hence the interference phase is irrelevant. The 
amount of crosstalk changes with channel spacing and with 
time shift between the data, as explained in [8]. During the 

transmission of binary "1", the effect of crosstalk additionally 
depends on the relative signal phase in the interfering channel. 
Depending on the interference phase, the crosstalk can be 
either constructive or destructive (see Fig. 1). 
 For the given system model, worst-case error probability is: 

 ( ) ( )0/1
2
11/0

2
1 PPPe +=  (19) 

where P(0/1) is the worst-case probability of detecting "0" 
when binary "1" is transmitted, and vice-versa for P(1/0). The 
probabilities are computed based on the results of [7], which 
have been modified to reflect the differences in system models 
and to include the more accurate statistics of phase-noisy 
signal with crosstalk. Worst-cases are then found by 
numerical search over the crosstalk time and phase shifts. 
 The following steps outline the procedure of performance 
evaluation of the FSK receiver: 
1) Compute the error probability for the single-channel 

system as in [7]. Optimize the integration time and the 
number of samples to obtain the best performance for the 
given total laser linewidth. 

2) With Md optimized in the previous step, and for the 
given channel spacing, compute P(1/0) for the worst-
case time shift τ2=1/(2del) [8], during the last sample. 

3) Compute P(0/1) for arbitrary time shift, initial phase and 
transition sample, taking into account the interference 
phase shift over each sample [8]. For this purpose, use 
Eqs. (10) and (15) to compute the appropriate moments. 
Using the computer search over the variables, find the 
worst-case performance. 

4) Using Eq. (19) and two previous steps, find the 
sensitivity penalty relative to the ideal single-channel 
case with no phase noise. 

Step 3 requires the use of derived matrix equations to describe 
the sumation of signal samples with appropriate crosstalk 
phase shift during each of Md samples. Once the appropriate 
moments are calculated, a Gaussian quadrature rule can be 
constructed in order to compute the performance [7]. The 
procedure is also applicable to step 2, with simpler conditions 
of no interference in the signal branch, i.e. all Wi are equal. 
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Fig. 2. Pdf of the envelope detector output with "best" and "worst" 
case interference, in logarithmic scale. Curves: full - Fokker-Planck 
approach, dashed - numerical simulation of the random variable X. 
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Fig. 3. (a) Block diagram of a FSK receiver model and (b) the 

schematic of channels after balanced detection 
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IV. NUMERICAL RESULTS AND DISCUSSION 

 In Fig. 1, we compare the pdf's at the square-law envelope 
detector output, with, as well as without interference. The 
curves are reconstructed using maximum entropy method and 
first 12 moments. We have also obtained the densities using 
the Fokker-Planck equation [1, 2] to find the joint density of 
real and imaginary parts of z, and then numerically computed 
the densities of |X|2 for the same r values. In Fig. 2, we show 
the pdf resulting form Fokker-Planck approach compared to 
the results of numerical simulation of variable X. The 
agreement is apparent and general behavior of the pdf curves 
is close to Fig. 1. 
 Fig. 4. shows sensitivity penalty of the FSK receiver due to 
phase noise and interchannel crosstalk. Penalties are 
calculated relatively to the sensitivity of the single channel 
receiver without phase noise, which is 40 photons per bit. In 
the limit of no phase noise, the two-channel system requires 
channel separation del of 2.7 times the bit rate in order to 
operate within 1 dB penalty. Phase noise generated by the 
lasers with total linewidth of 8% of the bit rate causes further 
sensitivity degradation. Wider bandwidths are required to 
contain the signals and the best single-channel sensitivity is 
obtained for Md=2, resulting in about 0.6 dB penalty without 
any crosstalk. Additional penalty due to crosstalk from the 
second channel is under 1 dB when the channel separation is 
above 3.6 times the bit rate. However, if the two channels are 
operated with exactly the same bit rate, and are synchronized, 
it should allow closer channel separation of about 2 times the 
bit rate. The situation is also beneficial for a system without 
phase noise, where channel spacing equal to the bit rate would 
suffice (not shown in Fig. 4). 
 When total linewidth equals 26% of the bit rate, optimum 
Md value is 3 and required channel spacing is about 5.5 times 
the bit rate. In this case, the synchronization of the channels 
can not reduce the required channel separation, although 
somewhat smaller penalties are expected. For linewidth equal 
to the bit rate, optimum Md is 7 and required channel 
separation rises to about 12, while the effects of synchro-
nization are less noticeable. Therefore, synchronization may 
enable closer channel separation only when laser linewidths 
are relatively small. When the linewidths are close or even 

larger than the bit rate, the difference between synchronized 
and non-synchronized systems becomes negligible. 
 System performance are computed asymptotically accurate 
as long as local laser and neighboring channel transmitting 
laser have negligible linewidths with respect to the 
transmitting laser. Moreover, if the neighboring channel 
transmitter linewidth is not negligible, yet small, the leading 
order asymptotic description of interference is expected to be 
valid. However, in a real system, all lasers are expected to 
have same linewidths, and the results of this paper should be 
considered approximate. Nevertheless, this is a reasonable 
degree of accuracy, somewhat better than in other aproaches.  

V. CONCLUSION 

 In this paper, we have presented a procedure that enables 
the use of moments approach in detailed analysis of coherent 
optical systems impaired by phase noise and interchannel 
interference. Furthermore, we have set up a model of a 
heterodyne FSK receiver and applied the procedure to 
performance evaluation of the two-channel system. We have 
found that the required channel spacing for 1 dB crosstalk 
penalty is about 2.7 times the bit rate in the worst-case 
situation without any influence of phase noise. When total 
laser linewidth equals the bit rate, the required channel 
spacing rises to at least 12 times the bit rate. Somewhat closer 
channel spacing may be achieved by synchronizing the two 
channels, but the operation is expected to yield significant 
results only if the laser linewidths are relatively small. 
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