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A Modified Approximation Algorithm for the Small 
Communication Time Scheduling Problem  

(MAASCT)* 
 

Vassil G. Guliashki1 
 

Abstract − The paper presents a modified approximation 
algorithm MAASCT, designed to solve the small communication 
time scheduling problem. The proposed algorithm is a 
modification of the recently published AASCT algorithm [2], 
improving its efficiency through reducing the number of 
computational operations, necessary in the worst case, and 
saving the same solution quality.1 
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I  INTRODUCTION 

The real problems for scheduling a finite number of tasks 
on limited number of processors require consideration of 
communication delays between two consecutive tasks when 
they are not assigned performance to one and the same 
processor. For convenience it is assumed that a precedence 
relation between two tasks i and j is available if task i needs 
data from task j before being started.  

The paper considers the problem for making a schedule to 
perform n tasks on m processors, for which the task 
duplication is not allowed, the communication between any 
two processors is possible and the communication delays 
depend only on the corresponding tasks. The precedence 
constraints and the processing times are arbitrary. The 
objective is to find the schedule that minimizes the overall 
finishing time, or the “makespan”. Let ρ denotes the ratio of 
the greatest communication delay to the smallest processing 
time and let the greatest communication time between any 
two different processors be smaller than the processing time, 
needed for the completion of the smallest task, i. e. ρ ≤ 1. This 
problem is known as Small Communication Time problem 
(SCT problem).  

There are surveys studying scheduling problems (see for 
example [1], [8], [14]), where some theoretical results about 
this problem are presented. As it is mentioned in [1] Picouleau 
has proven in 1992 that this problem is NP-hard. Jakoby and 
Reischuk have shown in [7] that the special case with 
unlimited number of processors and unit processing time is 
NP-hard even when the in-degree of each node is at most two. 
Using a similar reduction, they also proved that for a binary 
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tree, unit processing times and arbitrary communication times 
the problem is NP-complete. For fixed m ≥ 3, no algorithms 
which ensure optimal schedules are known yet. For this 
reason different kind of approximation algorithms have been 
developed (see for example [3], [5], [6], [10], [12], [13]). The 
parallelism of multiprocessor problem in combination with 
the communication delays causes difficulties at the design of 
approximation algorithms, because the problem is 
combinatorial one. The worst-case performance of all of them 
is as bad as possible (see [5]), especially if a great number of 
processors are assumed. The performance ratio for the known 
approximation algorithms varies around 2 and tends to 3 when 
the number of processors - m is fixed. The best known 
approximation algorithms for this problem are those presented 

in [10] and [5] with performance ratio 
3

7
, and 

m3

4

3

7
− correspondingly. For the problem with unlimited 

number of processors Hanen and Munier (see [5]) have 

created an approximation algorithm with 
3

4
performance ratio. 

The aim of this paper is to present the approximation 
algorithm MAASCT, which improves the efficiency of the 
algorithm AASCT [2] by means of some modifications of its 
steps. The new algorithm also avoids to a great extent the 
“anomalous behavior”, arising when the number of processors 
increases. The computational time complexity of MAASCT 
algorithm is O(γn2).  
 

II  PRELIMINARIES 
 
Some symbols are introduced to define the SCT task 

system. The set of n tasks will be denoted by T and the 
corresponding processing times by p1, …, pn.  Let G = (T,E) 
be a directed acyclic graph (DAG). An arc (i,j) ∈ E 
corresponds to the data transfer from task i to task j, that 
occurs after i has been finished and before the start of j. The 
duration of this data transfer is a constant delay, equal to cij 
in case i and j are performed by different processors and 0 if 
i an j are performed by one and the same processor. The task 
system ℑ(T, p, G, c) is called SCT task system,  if  the  
following  constraint  on  the  communication delays holds: 
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In some cases (see [2], [10]) the SCT system is defined by 
weaker conditions, but the algorithm presented in section 3 
is based on condition (1). 

Here is considered the problem of scheduling n tasks of 
the SCT task system on m processors under condition (1), 
where n and m are finite numbers.  

A schedule S = (t, π) assigns a starting time ti and a 
processor πi to each task i, so that  

1) for any pair of tasks (i,j) if πi = πj, then ti + pi ≤ tj or  
       tj + pj ≤ ti ; 
2) for any arc (i,j) of G, if πi = πj, then tj ≥ ti + pi; else  
              tj ≥ ti + pi + cij; 
3) if m processors are available: ∀ i ∈ T, πi∈{1,…,m}. 
The makespan of the schedule is denoted by ω: 

ω = max i ∈T (ti + pi)            (2) 
The optimal (minimal) makespan is denoted by ωopt. 
It will be assumed that the task i precedes task j if there is 

a path in G from i to j. The task i is called predecessor of j 
and the task j is called successor of i. This relation will be 
denoted by i→j. A task i is said to be an immediate 
successor (resp. predecessor) of a task j if there is an arc (j,i) 
(resp. (i,j)) in G. For any task i we denote by Γ+(i) (resp. by 
Γ-(i)) the set  of immediate successors, (resp. predecessors) 
of i. In case one of immediate successors of a task j satisfies 
the following condition: 

          tj < ti + pi + cij             (3) 
j is called the favorite successor of i. It follows from (1) that 
there is only one favorite successor j of i. Similarly i is 
called a favorite predecessor of j. 

The usual approximation algorithms used for scheduling 
tasks on m processors, called list scheduling (LS) 
algorithms, build a schedule by means of a greedy process, 
that schedules a new task at each iteration. Assuming a 
partial schedule is already built for the time period [0,tk-1], 
the greedy algorithm scans each processor to find a task that 
is ready for it at the moment tk and if any, to assign to it the 
first ready task in the list at this moment. Graham (see [3]) 
has proposed such algorithm for the problem without 
communication delays. For this case he obtained the 

performance ratio  ω/ωopt = 
m

1
2 − . Rayward-Smith has 

shown in [13] that any list scheduling algorithm with unit 
execution times and unit communication times (UET-UCT) 

satisfies ω < (
m

2
3 − )ωopt – (

m

1
1 − ). 

When general communication delays are considered (not 
necessarily SCT), an extension of the usual schema has been 
proposed [6], called ETF (i.e. earliest task first) that can be 
outlined as follows: 

While there remains an unscheduled task, the set of ready 
tasks R (the predecessors of which have been already 
scheduled) is determined. Then for each couple (i, π),  i ∈ R, 
π∈{1,…,m}, the earliest starting time of task i on processor 
π, denoted by e(i, π) is computed. Then the earliest starting 
time e = min(i, π) e(i, π) is determined and a task i, for which 
there is a couple (i, π) with e(i,π)=e is chosen and scheduled 

at time e. Finally a processor, for which e(i,π)=e is assigned 
to i. 

The ETF algorithm is analyzed in [6] and its performance 

ratio has the following bound: ω/ωopt ≤ 
m

1
2 − + ρ. 

As commented in [5] and [6] the relative performance of 
ETF can be decomposed in two parts. One of them is the 

Graham’s bound 
m

1
2 − and the other is the contribution of 

communication delays along a path of the graph, i. e. the 
ratio ρ.  The time complexity of ETF (see [6]) is O(mn2). 

Hanen and Munier [5] proposed an approximation 
algorithm called FS, based on an algorithm for unlimited 
number of processors and on a modification of ETF 
algorithm. They have proved that the performance ratio of 
their algorithm has the following worst-case bound:   

ω/ωopt ≤ 
)2(
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Möhring, Schäffter and Schulz [10] proposed another 
approximation algorithm, that is simpler than the algorithm 
in [5]. They first compute a schedule that regards all 
constraints except for the processor restrictions. This 
schedule is then used to construct a provable good feasible 
schedule for a given number of processors and as a tool in 
the analysis of the algorithm. The performance ratio of this 

algorithm is: ω/ωopt ≤ 
3

7
 . In the next section is presented an 

approximation algorithm that in contrast to the above 
mentioned algorithms not is not based on a greedy 
procedure. 
 
III  THE MODIFIED APPROXIMATION ALGORITHM 

FOR THE SMALL COMMUNICATION TIME 
PROBLEM (MAASCT) 

 
The algorithm MAASCT like the algorithm in [2] is based 

on the idea, that the arcs (i,j) of G having great cij–values 
should connect tasks performed by one and the same 
processor. In this way the tasks become favorite successors 
and the great delays are eliminated, which leads to reducing 
the greatest processing time and minimizing the makespan. 

At the first step of MAASCT a consequence of tasks 
(chain) is constructed, beginning with the root of the 
spanning tree of G, so that to the current task i is added the 
task j for which  the cij –value is maximal. In case there are 
many arcs having one and the same cij –value, then task j, 
for which pj is maximal, is chosen as a next in the chain 
under composition. If there are many tasks, having one and 
the same processing time, then the task with smallest index 
is chosen. In case the current chain is composed (i.e. no 
more tasks can be added to it), the chain is assigned to the 
next processor in the list of idle processors. If there is not 
available idle processor, then assign the composed chain to 
the first processor which becomes idle. In case the starting 
task of the current chain needs data transfer from a task 
assigned to another processor, the corresponding 
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communication delay should be added. A new graph G’ is 
created by removing all tasks in this chain from G. Then 
graph G is replaced by G’ and this step is repeated until no 
more tasks are available for composing new chains. 

At the second step the starting times for each task are 
calculated. At the third step are computed the finishing times 
for all processors. At the fourth step the processor with 
greatest finishing time (equal to the makespan) is 
determined. At the fifth step an attempt is made to rearrange 
the tasks on each processor in order to reduce the finishing 
times and the makespan. At the sixth step the replacing of 
groups of tasks on different processors is checked in order to 
reduce the makespan. At the seventh step an attempt is made 
to rearrange the places of tasks on the processor with 
greatest finishing time, trying to assign the last task on it to 
another processor and to reduce the makespan. Almost at 
each step O(n) mathematical operations are performed. Steps 
3÷5 may be repeated n times, and steps 2÷6 may be repeated 
γ times, where γ is a small positive integer. Hence there are 
necessary O(γn2) mathematical operations for the 
performance in the worst case. 

Step 5 and step 6 are modifications of step 3 and step 2 in 
AASCT algorithm (see [2]) correspondingly. Step 1 is the 
same as in the AASCT algorithm. 

Description of MAASCT: 
Step 0. Initialize G’ ≡ G, T’ = T, n’ = n, s’ is an empty 

 chain. Set   icount  = 0 and ic = 0. 
Step 1. Chose an initial task i from T’ (the root of G’) and  

 add it to the current chain s’.  
 For j=1,…,n’; (j≠i, i∈s’) add the task j to s’, where  
 cij= max ij∈E’ { cij }. If there are many arcs (more  
 than one), having the same  cij-values, add the task 
 j, having greatest pj, to s’(or if there are many tasks  
 with the same pj, add the first j in the list to s’).   
 Repeat the For cycle until there are not available  
 successors of the last task in the chain. 
 If there are idle processors available, assign the  
 chain s’ to the first processor π in the list of idle  
 processors, otherwise assign s’ to the first  
 processor, which will become idle. 
 Remove all task in s’ and their connecting arcs  
 from G’. Initialize s’ as an empty chain. 
 Repeat Step 1. until there are no more unassigned  
 tasks . 

Step 2. Compute the starting time ti for each task i on πj as  
           follows:  ti = max(fk + cki), where fk are the final  
           times for the tasks k ∈ Γ-(i) and k not assigned to πj. 
Step 3. Compute the finishing time for each processor πi,  
            (i=1,…,m;).  
Step 4. Find the processor πg, having the greatest finishing  
            time Tg after processing all tasks assigned to it.  
Step 5. On each processor πl, (l=1,…,m;) rearrange all  
            tasks, having one and the same predecessor in such  
            order, so that the task with the smallest starting  
            time ti is performed first, then the task with next  
            greater tj value and so on to the task having  
            greatest starting time tk. In case the makespan has  
            not been changed during this step go to Step 6.  
            Otherwise set ic = ic+1. If ic ≤ n, go to Step 3,  

           otherwise proceed Step 6.  
Step 6. For each task i on πg, find the task j on each  
           processor  πk, (k=1,…,m;), such that fi ≤ tj. Make an  
           attempt to reduce the makespan replacing the  
           corresponding subchains s’’k and s’’g after the tasks  
           j and i. In case this attempt is successful, set icount  
           = icount+1. If icount < γ go to Step 2, otherwise go  
           to Step7. 
Step 7. Try to change the place of the task before the last  
           on πg, and to assign the last task to another  
           processor, reducing the makespan.  
Step 8. Stop the computations (End of MAASCT). 

 
Theorem: The time complexity of MAASCT is O(γn2), 

where n is the number of tasks and γ is small positive integer 
correspondingly. 

Proof: Each from the steps 1, 2, 3, 5 and 6 requires O(n) 
mathematical operations. Since steps 3 ÷ 5 may be repeated 
no more than n times, and steps 2 ÷ 6 may be executed no 
more than γ times, the worst case performance of MAASCT 
algorithm requires O(γn2) mathematical operations.  

 
IV  BASIC FEATURES OF MAASCT 

 
In [3] and [13] is mentioned that when the number of 

processors increases, sometimes the performance of the 
approximation algorithm degrades (“anomalous behavior”). 
This is due to the essence of greedy procedures used. At 
Step 1. of  MAASCT algorithm (like in the AASCT 
algorithm [2]) the composed chains are dispatched uniformly 
to all processors, so that the anomalous behavior is reduced 
to a great extent. Step 5 and Step 6 try to reduce the 
makespan changing the starting time of a task on the same 
processor and replacing tasks on different processors 
correspondingly. In this way they contribute anomalous 
behavior to be avoided.  

Another important feature of MAASCT algorithm is that it 
has polynomial time complexity, which is better than that 
one of AASCT approximate algorithm for the same class of 
problems. In case γ ≤ m, MAASCT algorithm has better or 
the same time complexity as the ETF algorithm (see [6]).  

The mentioned features lead to the good performance of 
MAASCT as it is demonstrated in the next section. 
 

V  AN ILLUSTRATIVE EXAMPLE 
 

Here is considered the illustrative example used in [5]: 
 

                          1                           5 
      5                         3  
                          1             4 
               1    1   1  
                      1       2                       5 

 
                                                            1 

 
 

 
         Fig. 1. Graph G with communication delays 
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 The corresponding SCT task system for the example on 
Fig. 1. is presented in Table 1: 
 

Table 1 
SCT task system for the graph G from Fig. 1. 

a b c d e f g h i 
6 7 9 8 10 6 6 10 6 

 
On Fig. 2 and Fig 3. are presented two schedules as shown 

in [5]. 
             6     8                               18           24                    34 
         a     7             e             16     i       23         h    29 
         b              11    c                 19               25  f 
                                    d                    g 

 
Fig. 2. An ETF schedule (3 processors) 

 
Obviously the ETF algorithm creates a schedule with 

makespan (maximal finishing time) equal to 34. For the 
same example FS algorithm (see [5]) creates schedule with 
makespan equal to 29. 
              6     8                          16                             26 
         a       7             d                 17           h   23               29 
            b       8               c              18         g      24      f 
                                       e                       i 
 

    Fig. 3. A FS and MAASCT schedule (3 processors) 
 

The MAASCT algorithm obtains the same result as the FS 
algorithm (see Fig. 3). Taking into account that each task 
can be started after it receives the necessary data from all its 
predecessors, the algorithm AASCT [2] obtains the same 
result. After Step 1 MAASCT schedules on first processor 
tasks a, d and h; on second processor – tasks b, c, f and g; 
and on the third processor – tasks e and i, starting e at 
moment t=8 (Step 2). The makespan is equal to 32 on the 
second processor (Step 4). After Step 5 MAASCT obtains 
the result on Fig. 3 with makespan equal to 29. At Step 6 
and Step 7 the algorithm can not find new order of tasks, 
reducing the makespan. 
On Fig. 4 is presented the result obtained by MAASCT 
algorithm for the same example but on two processors. After 
Step 1 the task schedule for the first processor is a, d, h, g; 
and for the second processor: b, c, f, e, i; The makespan is 
42. After Step 6 tasks c and f are replaced by tasks e and i. 
The makespan is equal to 39. After Step 7 the makespan is 
reduced to 38 as shown on Fig. 4. 
               6  8                       16                    26        32       38 
      a         7        d                     18   h            27  g     33  f 
      b                 e                         c                  i 
 
              Fig. 4. A MAASCT schedule (2 processors) 
 

VI  CONCLUSIONS 
 

An approximation algorithm called MAASCT is presented 
in this paper. Its time complexity is O(γn2). For comparison 
the algorithm AASCT (see [2]) has O(γn2(n-m)) and ETF 

(see [6]) has O(mn2) time complexity. In case γ ≤ m, 
MAASCT algorithm has better or the same time complexity 
as the ETF algorithm. It has also a better efficiency than the 
AASCT algorithm [2]. The known approximate algorithms 
in the literature have polynomial time complexity, but some 
of them have “anomalous behavior” (see [3], [13]) due the 
use of greedy heuristics. The algorithms AASCT [2] and 
MAASCT dispatch the tasks uniformly to all processors, so 
that the anomalous behavior is reduced to a great extent. 
They don’t use artificial delays (see [5]). It is expected that 
the MAASCT algorithm will have better performance in 
comparison to ETF algorithm, as well as to some other 
approximation algorithms, based on greedy procedures.  
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