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AAbstract  --  This paper discusses the class of GM-estimators for 
outlier robust regression estimation. M-estimators with objective 
functions of Cauchy, Welsh, Huber, Tukey, Mallows’ GM-
estimators and Schweppe’s GM-estimators are investigated. An 
accuracy, a convergence and a computational complexity of the 
algorithms are analyzed. The best model is determined by robust 
Akaike information criterion. 
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I. INTRODUCTION 
Consider the linear regression model 

Nixy i
T
ii ,,1, =+= εβ , where ix  is a p-dimensional 

vector. The class of generalized maximum likelihood (GM) 
type estimators is defined implicity by the condition 
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The parameter σ denotes the scale of iε . The function 

( )⋅⋅,ς  depends on both the set of regressors ( ix ) and the 
standardized residual. The most important conditions that 
must be satisfied by ( )⋅⋅,ς , in order for the GM estimator to 

have nice asymptotic properties are that for all pRx ∈  
( )⋅,xς  has to be continuous and continuously differentiable 

except in a finite number of points, that ( )⋅,xς  has no vertical 

asymptotes, and that ( )⋅,xς  is odd. Moreover 

( )( )( )T
iiii xxx 2, σεςΕ  and ( )( )T

iiii xxx σες ,′Ε  must 

exist and be nonsingular, where ( ) ( ) rrxrx ii ∂∂=′ ,, ςς , 

and r denotes standardized residual σε i [2], [6]. 
The OLS estimator is obtained as a special case of Eq. (1) 

by setting ( ) rrx =,ς . Also M-estimators are special case of 

Eq. (1), namely ( ) ( )rrx ψς =,  for some function ψ 
satisfying the above regularity conditions [6]. 

Instead of defining GM estimators as a solition to a first 
order condition of the type Eq. (1), one can also define them 
as the minimand of the objective function 
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with ( ) ( )rxrrx ,, ςτ =∂∂ . The focus in this paper, 
however, is on the definition as aplied by Eq.(1). Note that the 
OLS estimator is defined by setting ( ) 2, 2rrx =τ , while 
the class of M-estimators is obtained by setting 

( ) ( )rrx ρτ =,  with ( ) ( )rdrrd ψρ = [1],[3]. 

II. FEATURES OF MALLOWS’ GM-ESTIMATORS AND 
SCHWEPPE’S GM-ESTIMATORS 

The easiest way to explain the intuition behind GM 
estimators is by considering the class of Mallows’ GM 
estimators, given by ( ) ( )rwrx xψς =, , with ( )rψ  as 

intrtoduced above (Section I), and ( )xwx  a weight function 
that assigns weights to the vectors of regressors, 

[ ]1,0: →p
x Rw . Using this specification of ( )⋅⋅,ς , Eq. (1) 

can be rewritten as 
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The functions ( )⋅ψ  and ( )⋅xw  can now be chosen such that 
the weight of ith observation decreases if either 
( ) σβT

ii xy −  becomes extremely large (vertical outliers 

and bad leverage points), or ix  becomes large (leverage 
points)[6]. In this way, outliers and influential observations 
automatically receive less weight. For the OLS estimator, 

( ) 1≡xwx  and ( ) 1≡rwr , such that all observation receive 
the same weight. 

A disadvantage of Mallows’ proposal for GM estimators is 
that it assigns less weight to both good and bad leverage 
points, but good leverage points often increase the efficiency 
of the imployed estimator. As an alternative to Mallows’ 
proposal for GM-estimators, one can consider the proposal of 
Schweppe. The Schweppe’s form of the GM estimator only 
downweights vertical outliers and bad leverage points, but not 
good leverage points. This generally increases the efficiency 
of the Schweppe’s estimator over the Mallows’ version. The 
Schweppe’s specification of ( )⋅⋅,ς  is given by 
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 ( ) ( )( )xwrwrx xxψς =, . (5) 

Using Eq. (5), Eq. (1) can be written as 
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Assume that ( )⋅xw  and ( )⋅ψ  are chosen such that outliers 

receive less weight. For a leverage point (y,x), ( )xwx  will 
than be small. The weight for the ith observation in the 
estimation proces is given by ( )⋅rw  in Eq. (6). Note that this 
weight may be close to one if the standardized residual is 
close to zero, irrespective of whether the observation is a 
leverage point or not. The requirement that the standardized 
residual is close to zero becomes stricter if ( )ix xw  is small, 

i.e. if ix  is a leverage point. 
The Schweppe’s version of GM-estimators also has some 

practical disadvantages. First, the bias in the Schweppe’s 
estimator may be larger than that of the Mallows’ estimator. 
Second, the Schweppe’s estimator more easily displays 
convergence problem than the Mallows’ variant, especialy if 
strongly redescending specification of ψ are used. Even if no 
convergence problems arise, moderately bad leverage points 
tend to have a larger influence on the Schweppe’s version of 
the GM-estimators than on the Mallows’ version [4],[6]. 

If the weights on the regressors ( )⋅xw  are dropped, the 
class of GM-estimators reduces to the class of M-estimators. 
Thus, the class of GM-estimators contains the class of 
maximum likelihood type estimators (M-estimators). 
Therefore, the class of M-estimators is not dealt with, 
separately. 

In the next part of this paper it will be discuss the problem 
about specification of ( )⋅ψ  and ( )⋅xw . The OLS 

specification for ( )⋅ψ , ( ) rr =ψ , is the most familiar one. 
OLS-estimator is not robust. The most important reason for 
this is that the function ( ) rr =ψ  is unbounded. Several 
forms of bounded ψ functions are suggested in the 
literature,e.g., the Huber, the Cauchy, the Geman-McClure, 
the Welsch, the Tuke, the Hampel, the Student t specification, 
etc.[3],[6]. 

The Huber’s function ψ is given by 
( ) ( )rccmedianr ,,−=ψ , where c>0 is a tuning 

constant[1]. The lower c, the more robust is the resulting 
estimator. As a special case of the Huber’s estimator, one can 
obtain the OLS estimator ( ∞→c ) and the least absolute 
deviations (LAD) estimator ( 0→c ). The constant c not only 
determines the robustness of the coresponding estimators, but 
also its efficiency. For Gaussian iε , for example, the 
efficiency of the estimator is an increasing function of c. This 
illustrates that there is a tradeoff beetween efficiency and 
robustness. Common value for c is 1,345 for the Huber’s 
function. This value produce estimators that have an 
efficiency of 95% in case iε  is normally distributed [3]. 

As a specification for the weight function ( )⋅xw  for the 
regressors, one usually encounters the specification 

 ( ) Nihxw iix ,,1,1 =−= , (7) 

with ih  the diagonal elements of the hat matrix H [1],[4] 

 ( ) HyyXXXXXy TT === −1ˆˆ β . (8) 

III. THE GENERALIZED PROCEDURE FOR ROBUST 
ESTIMATION 

GM estimators are mostly computed by means of numerical 
techniques. Most of these techniques employ iteration 
schemes. Therefore, an initial estimate is required to start up 
the iteration. A starting value should, preferably, be easy to 
calculate. From this perspective, the OLS-estimator usually is 
used. 

Once the starting values have been obtained, one can start 
an iteration scheme for solving Eq. (1). It is, of course, 
possible to use general techniques for solwing sets of 
nonlinear equations. The special structure of Eq. (1), however, 
also allows a different iteration scheme by means of weigthed 
and ordinary least - squares. 

A very important computational aspect concerns the 
estimation of scale parameter σ. If σ is omitted from Eq. (1), 
the GM-estimator is not scale invariant, i.e., the estimates 
would change if both iy  and ix  were multiplied by a 
constant k>0. The estimate σ, one cannot safely use the 
ordinary standard deviation, as this estimator is not robust. An 
often used alternative is the median absolute deviation, 
defined as 

 { }( ) ( )ii
N
ii medianmedianMAD εεε −==1 . (9) 

The MAD is usually multiplied by 1,4826 to make it 
consistent estimator of the standard deviation for Gaussian iε . 
The use of a scale equivariant estimator for σ in Eq. (1) 
renders the GM-estimator for β scale equivariant [6]. 

We proposed the generalized procedure for robust 
estimation includes the sequent stage, listed below: 

• choice of estimator’s type; 
• choice of method for estimation; 
• calculation of the model’s parameters with chosen set 

of structures; 
• choice of the best structure from this set, with applying 

of robust Akaike information criterion; 
• test for first order autocorrelation in the residuals; 
• final choice of the model, after analysis of results from 

applying of different estimation methods and 
estimator’s types. 

IV. MODEL SELECTION AND MODEL DIAGNOSTICS 
The best model among competing multivariate models is 

determined by robust Akaike information criterion [2] 
 pLFRAICR 22 += . (10) 

The parameter p denotes the number of estimated 
parameters. The robust loss function LFR depends on both the 
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number of observations (N) and the objective function ( )irρ  
of the standardized residuals 

 ( )∑
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i
irNLFR

1

1 ρ . (11) 

AICCR (robust Akaike information criterion corrected) is 
used when the ratio 40<pN [5] 
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The Durbin-Watson test for first order autocorrelation in 
the residuals is used 
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V. SIMULATION INVESTIGATIONS 
It is created an applied software in MATLAB with 

realization of the sequent varieties: 
• estimator’s type – Mallows’ GM, Schweppe’s GM, M-

estimator; 
• estimation methods – modified residuals, modified 

weigths, pseudo observations, Huber-Kleiner’s method; 

• objective function - Huber, Cauchy, Geman-McClure, 
Welsch, Tuke, “Fair”, Lp, L1. 

• scale estimation – MAD or ordinary standard deviation. 
Simulation research is made with the model: 

 21 231368 xxy ++−= . (14) 
Number of the observations is 100. To the output model 

signal is added Gaussian white noise and the ratio noise/signal 
is 7,76%. There are simulated 10 additional outliers and as a 
result the ratio noise/signal increases up to 32%. 

The accuracy of the estimations pjbj ,,0,ˆ =  is 
defined by relative mean-squared error 
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The parameters pjbj ,,0, =  denote the real values of 
model’s parameters. 

Criterion for stopping the iterative procedure is 

 0001,0ˆˆ 1 ≤−= −ii bbε . (16) 

Computational complexity of the algorithm is estimated by 
the cumulative number of floating point operations into 
MATLAB (flops). 

At the estimation of the parameters there is used general 
regressive model from the type 
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There are made a lot of investigations with the mentioned 
in Section V eight objective functions. The best results in 
aspect of convergence and accuracy is given by Huber’s 
function and it is used in the next investistigation Eq. (18). 
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TABLE I 

CHOICE OF ESTIMATOR’S TYPE AND METHOD 
 Qb iter flops 

MAD .0034 7 13703 Modified 
residuals std .0076 6 78202 

MAD .0034 6 36744 Modified 
weights std .0076 5 95422 

MAD .0034 7 14843 Pseudo 
observetions std .0076 6 78667 

MAD    

M
-e

st
im

at
or

 

Huber- 
Kleiner std .0034 8 83893 

MAD .0034 7 79436 Modified 
residuals std .0075 6 79767 

MAD .0034 6 102143 Modified 
weights std .0075 5 96674 

MAD .0034 7 80576 Pseudo 
observetions std .0075 6 80232 

MAD    M
al

lo
w

s’
 G

M
 

Huber- 
Kleiner std .0032 9 87859 

MAD .0034 7 79436 Modified 
residuals std .0075 6 79767 

MAD .0034 6 102143 Modified 
weights std .0075 5 96674 

MAD .0034 7 80576 Pseudo 
observetions std .0075 6 80232 

MAD    Sc
hw

ep
pe

’s
 G

M
 

Huber- 
Kleiner std .0033 7 83070 

The results from experiments are given in Table I. The 
relative mean-squared error (Qb), number of iterations for 
reaching the preassigned accuracy ε (iter) and the 
computational complexity (flops) are given in accordance 
with the type of estimators (Mallows’ GM, Schweppe’s GM 
and M-estimator), the used method for estimation (modified 
residuals, modified weigths, pseudo observations, Huber-
Kleiner’s method) and the chosen scale estimators of residuals 
(median absolute deviation – MAD or ordinary standard 
deviation - std). 

TABLE II 
MODEL SELECTION AND MODEL DIAGNOSTICS 

 M1 M2 M3 M4 M5 M6 
bo -67,28 -73,04 -68,05 -68,04 -67,91 -68,19 
b1  12,77 12,93 12,94 12,96 13,02 
b2 22,68  22,77 22,78 22,79 22,91 
b12    0,171 0,118 0,192 
b11     -0,135 -0,103 
b22      0,252 

LFR 35,74 107,4 5,63 5,553 5,481 5,406 
AICR 75,49 218,8 17,26 19,11 20,96 22,81 
AICCR 75,62 218,7 17,51 19,53 21,60 23,71 
DW 1,88 2,065 2,40 2,402 2,408 2,415 
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Table II displays the estimation parameters, the model 
selection and diagnostics. The data are simulated with model 
Eq. 14. Mallows’ GM-estimator with modified weights 
method and MAD as scale estimator is applied. The best 
model is 

 21 77.2293.1205.68 xxy ++−= . 

The corresponding values of AICR and AICCR are minimal 
and DW=2,4. Тherefore, there is not first order autocorrelation 
in the residuals and the estimations are unbiassed. 

VI. CONCLUSION 
From the implemented research then can be made some 

conclusions: 
• the minimum error (Qb=0,0032) is achieved with 

Mallows’ GM-estimator with Huber-Kleiner’s method, 
but This method gives the slowest convergence; 

• the rate of convergence, at every forms of the robust 
estimators, is the greatest with modified weights 
method, but this method also gives the greatest 
computational complexity; 

• modified residuals method gives the least 
computational complexity; 

• the accuracy with MAD scale estimators is nearly 
twice as big as than the ordinary standart deviation 
one; 

• the usage of the studentized residuals (it is not given in 
the Taable I) leads to considerably increasing of the 
computational complexity of the algorithms (for 
Schweppe’s GM with Huber-Kleiner’s method - 
flops=83070, but for Schweppe’s GM with Huber-
Kleiner’s method with studentised residuals - 
flops=2664134); 

• The equal error (Qb=0,0034 or Qb=0,0075) is dued to 
the application of the same objective function in every 
estimators – Huber’s function Eq. (18). 

VII. APPENDIX 
Cosider the problem for investigation of micro motors. 

There is not completed design theory in this area of 
knowledge. Therefore, some characteristics must be defined 
experimentally. This leads to creation of mathematical model. 

Factors, their values and steps of variation are given in 
Table III. 

TABLE III 
MICRO MOTOR 

EP55/110A Lrotor  
[mm] 

Lstator 
[mm] 

Wrotor 
[number of 

wind] 

Lwavstator 
[mm] 

factors X1 X2 X3 X4 

Base level 40 40 54 167 

step 2,5 2,5 10 5 

Upper 
level 

42,5 42,5 64 172 

Lower 
level 

37,5 37,5 44 162 

It is realized Full Factors Experiment with N=24. The 
motor’s efficiency is a function of factors 

( )4321 ,,, xxxxηη =  and is obtained by applying of 
Mallows’ GM-estimator with modified weight method and 
MAD for scale estimation. 

The best model is 

 
31214

321

97.473.028.0
32.597.049.52.49

xxxxx
xxx

−+−
−++−=η

. 

Indicators, according which the best model is chosen, are: 
LFR=0,3271; AICR=14,7941; AICCR=28,7941; DW=1,9244. 
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