
 

731

Chirped Gaussian Pulse Propagation Along Anomalous 
Dispersive Optical Fiber in the Presence of Interference 
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Abstract – Basic task of all telecommunication systems is that a  

signal propagation from transmiter to receiver is as good as 
possible. There are many factors, in optical telecommunication 
systems, which disable such transmission. Dispersion is one of 
them. Optical fiber can work under normal or anomalous 
dispersive regime, but anomalous dispersive regime is better for 
signal propagation. It is the reason why we study linear chirped 
Gaussian signal propagation along such fiber. Influence of 
coherent interference on transmission quality is also studied in 
this paper. That influence is shown by pulse shape at the reciver, 
i.e. at the end of optical fiber. Nonlinear Schrödinger equation is 
solved to get pulse shape along optical fiber. Interference can 
appear anywhere along the fiber and therefore we determined to 
what extent appearing place of interference affects signal 
propagation and transmission quality. 

Keywords -  Chirped Gaussian signal, Interference, Dispersive 
optical fiber, Nonlinear Schrödinger equation. 

I. INTRODUCTION 

Intermodal dispersion results from refractive index and 
mode propagation constant frequency dependence and it leads 
to pulse deformity, i.e. pulse broadening when pulse 
propagates along optical fiber [1]. Dispersion coefficient β2 is 
a parameter that shows magnitude of dispersion. It defines 
dispersive regime of optical fiber, too. If β2>0, then optical 
fiber works under normal dispersive regime. On the contrary, 
when β2<0 then we can say that optical fiber is exposed to 
anomalous dispersion [1,2]. It is optimal that optical fiber 
works under anomalous dispersive regime because dispersive 
influence can be reduced and soliton transmission can be 
realised under determinate conditions in such optical fiber. 
When optical fiber is linear, pulse broadening is   the   same   
in  cases   when   absolute   value   of   dispersive  
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coefficients β2 are equal [3]. Because of that it does not matter 
if linear optical fiber work under normal or anomalous 
dispersive regime. 
 

Interference is one kind of disturbance that appears in 
optical telecommunication system and it is the cosequence of 
crosstalking, reflection, etc... [2,4,5]. It can be coherent or 
noncoherent, i.e. it can be of the same or different frequency 
in relation to a useful signal and it can appear anywhere along 
the optical fiber. Coherent interference is more important 
because it cannot be eliminated by optical filtering in reciver. 
It is the reason why such a kind of  interference is discussed in 
the paper [6,7].  

There are many ways to resolve signal transmission 
problems discussed above.  They can be solved numerically or 
analytically. Great mathematical knowledge is needed for 
analytical solving and it is simpler to solve problem 
numerically using some programs. 

II. PROPAGATION SHRÖDINGER EQUATION 

Pulse propagation along nonlinear-dispersive optical fiber 
can be described by equation [1]: 

 AAiA
t
Ai

t
A

z
A 2

2

2

21 22
γαββ =+

∂
∂+

∂
∂+

∂
∂

 (1) 

where A(z, t) is slowly varying amplitude of pulse, α is optical 

losses, 
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propagation constant, vg is group velocity and γ  is 
nonlinearity coefficient that is defined as: 
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n2 is nonlinear index coefficient, λ is wavelength of signal and 
Aeff is effective core area. If we introduce the following 
normalization: 
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where T0 is half-width, i.e. time when signal power declines to 
1/e of its top value, P0 is peak power of useful signal and if we 
introduce the following changes [1]: 
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where LD is dispersive length and LNL is nonlinear length, then 
Eq. (1) becomes: 
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Optical losses are neglected in Eq. (5), i.e. α=0, because 
they are very small for λ=1.55 µm [1]. Equation (5) is well-
known as nonlinear Schrödinger equation. There are many 
methods, numerical or analytical, for its solving. Symmetrical 
split-step Fourier method is used in this paper for solving 
Schrödinger equation because of the fact that it is very fast 
and very accurate method [1]. 

Parameter that defines working regime of optical fiber is: 
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When N2<<1 then dispersive effects dominate optical fiber. 
In case when N2≈1 then dispersive and nonlinear effects 
establish balance among themselves [1]. 

III. CHIRPED GAUSSIAN PULSE PROPAGATION 
ALONG OPTICAL FIBER IN THE PRESENCE OF 

INTERFERENCE 

Chirped Gaussian pulse is very often found as useful signal 
in optical telecommunication systems [1,6,8]:  

 ( ) )2)1(exp(,0 2
1 ττ iCaU +−=  

 ( ) ( ) τωττ rUs cos,0,0 =  (7) 
where value of parameter a depends on transmited 
information (1 or 0), C1 is chirp of useful signal and 

0Tr ωω = is normalized frequency. 

Coherent interference is of the same frequency as useful 
signal and there is time and phase shift in relation to useful 
signal. Interference at the place of appearance is: 

 ( ) ( ) ),cos(,, ϕτωττ += riiii zUzs  
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where b i ϕ are time and phase shift, respectively. zi is place 
along optical fiber where interference appears, C2 is chirp of 
interference and value of parameter ai depends on magnitude 
of interference. Interference can be chirped although useful 
signal is not linearly chirped and it depends on the kind of 
interference [7]. Envelope and phase of resulting signal at the 
place of interference appearance are [6]: 

 ( ) ( ) ( ) ( ) ( )τϕττττ ,cos,,2,, 22
iiiiiiir zUzUzUzUzU ++=  (9) 

 ( ) ( )
( ) ( ) ϕττ

ϕττψ
cos,,

sin,,
iii

ii
i zUzU

zUarctgz
+

=  (10) 

All time shapes of signals both along and at the end of 

optical fiber, that are showed in following figures, are 
gained by solving Schrödinger equation (5) by symmetrical 
split-step Fourier method [1,9,10,11] whereby initial 
conditions are modificated, at the place of interference 
appearance. The following values of parameters are used in 
all cases: T0=4 ps, Aeff =80 µm2, λ=1.55 µm, , n2=32⋅10-16 
cm2/W and β2=-19 ps2/km. 

  

Fig. 1. Nonchirped Gaussian signal propagation along dispersive 
optical fiber (N2<<1) 
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Fig. 2. Useful signal shape at the end of optical fiber in the absence 

of interference 

Nonchirped signal propagation along dispersive optical 
fiber is displayed in Fig. 1 and it shows to what extent 
dispersion affects signal expansion. We can see that this 
dispersion influence is quite great and it is proved in Fig. 2 
that shows signal shapes at the reciever for both chirped and 
nonchirped useful signal. It is known that if optical fiber and 
signal have such parameters that β2C1<0 is valid, then signal 
narrows until  determined  length  of  optical  fiber  and  after 
that signal  starts  



733

                                        

                                        

                                        

                                        

                                        

                                        

0 50 100 150 200 250 300
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
IU

eq
(L

,τ )
I2

τ

 C1=0,C2=0,SIR=10dB
 C1=0,C2=1,SIR=10dB
 C1=0,C2=-1,SIR=10dB

 
a) 

                                        

                                        

                                        

                                        

                                        

                                        

0 50 100 150 200 250 300
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

IU
eq

(L
,τ )

I2

τ

 C1=1,C2=0,SIR=10dB
 C1=1,C2=1,SIR=10dB
 C1=1,C2=-1,SIR=10dB

 
b) 

                                        

                                        

                                        

                                        

                                        

                                        

0 50 100 150 200 250 300
0.00

0.05

0.10

0.15

0.20

0.25

0.30

IU
eq

(L
,τ )

I2

τ

 C1=-1,C2=0,SIR=10dB
 C1=-1,C2=1,SIR=10dB
 C1=-1,C2=-1,SIR=10dB

 
c) 

Fig. 3. Signal shapes at the end of optical fiber in the presence of 
interference (zi=0.3L) 

a) C1=0  b) C1=1  c) C1=−1 
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c) 

Fig. 4. Signal shapes at the end of optical fiber in the presence of 
interference (zi=0.6L) 

a) C1=0  b) C1=1  c) C1=−1 

broadening to the end of optical fiber [1]. It is documented in 
Fig. 2, too. Signal with minimal expansion along optical fiber 
is signal which has such a chirp that the condition above is 
realised. Maximal signal deformation is in case when β2C1>0. 



734

Figs. 3 and 4 show signal shape at the end of optical fiber in 
the presence of interference along optical fiber. If we look at 
Eq. (8), we can conclude that time and phase shift are random 
values and that they can have any values ranging from [-
1/(2B), 1/(2B)], i.e. [0, π] respectively (B – bit rate), but in 
this paper we have considered  the worst case, i.e. b=0 and 
ϕ=π. We concluded, comparing Figs. 2, 3 and 4, that maximal 
deformation, i.e. maximal pulse expansion happens in case of 
C1=-1 because of condition β2C1>0 (β2=-19 ps2/km). This 
appearance is more pointed up in the presence of interference. 
Then, signal loses its shape and big error can be made at the 
reciever in detection process in the presence of jiter (Figs. 3c 
and 4c). The least pulse deformation, bacause of dispersive 
effects and presence of interference, happens when C1=1. 
Reason for that is signal behaviour which narrows along the 
first part of optical fiber and expands along the second part of 
optical fiber [1]. We can see that, under such condition, signal 
is more immune to place of  interference appearance, too. It is 
interesting that signal broadening is quite less for case C1=1 
and C2=-1 then when C1=1 and C2=1. It can be explained  by 
opposite action of chirps such as opposite action of chirp 
which is made by dispersion and initial chirp which enable 
pulse narrowing (Fig. 2). 

IV. CONCLUSION 

Dispersion is inevitable phenomenon in optical 
telecommunication systems and because of that its influence 
on chirped Gaussian signal propagation is considered in this 
paper. First, we showed that influence of dispersion depends 
on chirp sign of useful signal and dispersive regime optical 
fiber works under. Since interference which can be anywhere 
along the fiber appears as one of the disturnabces in optical 
telecommunication systems, we considered useful signal 
immunity to it and its place of appearance. From these results 
we concluded that the signal with negative initial chirp is the 
least immune to interference and its appearing place in case 
when optical fiber works under anomalous dispersive regime.  

All the problems considered in the paper we resolved by using 
programming package Mathematica 4. 
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