
 

763

Using Genetic Algorithms to Solve Software Clustering 
Problem 

Violeta T. Bojikova1 and Milena M. Karova2 

 
 

                                            
1 Violeta Bojikova is with the Department of Computer 
Science Varna Technical University, Bulgaria,  
e-mail: vbojikova2000@yahoo.com  
2 Milena Karova is with the Department of Computer 
Science Varna Technical University, Bulgaria, 
e-mail:mkarova@ieee.bg 

Abstract - In this paper is presented a genetic algorithm (GA), 
which solves software clustering problem, using a fitness function 
that is based on maximizing the cohesiveness of clusters and 
minimizing inter-cluster coupling. Software clustering facilitates 
program understanding and reengineering. The presented 
approach differs strongly from other published genetic 
approaches because of the choice of the fitness function, genetic 
operator’s realization and the presence of determinism.  

The goal of the developed genetic project is to produce better 
clustering results, with regard to the solution quality and the 
algorithm complexity. s. 

Keywords – search-based software clustering algorithms, 
software clustering, genetic algorithms, program reengineering  
 

I. INTRODUCTION 
Most interesting software systems are large and complex, 

and as a consequence, understanding the structure of these 
systems is difficult [1,2,3]. Software Engineering books 
advocate the use of documentation as an essential tool for 
describing a system's intended behavior, and for capturing the 
system's structure. In practice, however, we often find that 
accurate and current design documentation does not exist. 
This problem is exacerbated because the original designers 
and developers of the system are often no longer available for 
consultation.  

In the absence of advice or documentation about a system's 
structure, software maintainers are left with several choices. 
First, they can manually inspect the source code to develop a 
mental model of the system organization. This approach is 
often not practical because of the large number of 
dependencies between the source code components. Another 
alternative that is now becoming available to software 
maintainers is to use automated tools to produce useful 
information about the system structure. A primary goal of 
these tools is to analyze the low-level dependencies in the 
source code, and cluster them into meaningful subsystems. 

A subsystem is a collection of source code resources that 
closely collaborate with each other to implement a high-level 
feature, or provide a high-level service to the rest of the 
system. Typical source code resources that are found in 
subsystems include modules, classes, packages, files. 
Subsystems facilitate program understanding by logically 
treating many low-level source code resources as a single 
high-level entity. Subsystems are not specified in the source 
code explicitly, as most programming languages do not 

support this kind of structuring yet. Because source code lacks 
the descriptiveness necessary to specify subsystems, we can 
use tools for automatically recovering the subsystems of a 
software system from the source code. Software designers use 
directed graphs to represent the structure of a software system 
and to make the structure of complex software systems more 
understandable. 

The graph is formed by representing the modules of the 
system as nodes, and the dependencies between the modules 
as edges. We refer to this graph as the Module Dependency 
Graph (MDG) of a software system. Each partition of the 
MDG consists of a set of non-overlapping clusters that cover 
all of the nodes of the graph. The goal is to partition the MDG 
into meaningful subsystems. 

Given an MDG with n components that are partitioned into 
k distinct clusters (subsystems), the number of ways to cluster 
the MDG grows exponentially with respect to the number of 
modules in the system. The general problem of clustering 
software systems is NP hard, however, the formal proof of 
this remains an open problem. Most researchers have 
addressed the software clustering problem by using heuristics 
to reduce the execution complexity to a polynomial upper 
bound. 

Our approach treats clustering as an optimization problem, 
where the goal is to find a good (possibly optimal) partition. 
To explore the extraordinarily large solution space of all 
possible partitions for a given MDG, we use a Genetic 
Algorithm (GA).  
 

II. GENETIC ALGORITHMS: ENCODING, 
OBJECTIVE FUNCTION, OPERATORS 

 
Genetic algorithms apply ideas from the theory of natural 

selection to navigate through large search spaces efficiently 
[2]. GAs perform surprisingly well in highly constrained 
problems, where the number of “good” solutions is very small 
relative to the size of the search space. 

GAs operate on a set (population) of strings (individuals), 
where each string is an encoding of the problem’s input data. 
The number of strings in a population is defined by the 
population size. The larger the population size, the better the 
chance that an optimal solution will be found. Since GAs are 
very computationally intensive, a trade-off must be made 
between population size and execution performance. In the 



764

case the population size is defined by the number of 
sequential algorithms that form the stating population [4,5]. 

Each string’s fitness is calculated using an objective 
function. In each generation, a new population is created by 
taking advantage of the fittest individuals of the previous 
generation. 

Genetic algorithms are characterized by attributes such as 
objective function, encoding of the input data, genetic 
operators, and population size. After describing these 
attributes, we describe the GA algorithm in Section III. 
 

• The objective function 
The objective function k is used to assign a fitness value to 

each individual in the population. In the case, it is designed so 
that an individual with a lower objective function value have a 
high fitness and represents a better solution to the problem. 

The basic idea of this objective function is “well designed 
software systems are organized into cohesive clusters that are 
loosely interconnected”.                                                             

The weight – Wk of each cluster gi∈MDG with xi∈X 
components (nodes) corresponds to the restrictive condition 
Wo, where wi – is the label of node - xi and presents the 
number of node’s elements (i.e. modules):                                                                                

The value of  “k”,  where kij is the number of inter-edges 
(i.e., external edges that cross cluster boundaries) between 
nodes xi and xj is calculated as follow: 

M is the number of clusters in the current partition of the 
MDG.  

 
• Encoding 
GAs operate on an encoding of the problem’s input data. 

The choice of the encoding is extremely important for the 
execution performance of the algorithm. A poor encoding can 
lead to long-running searches that do not produce good 
results. 

Each node in the graph G=(X,U), where N=|X| has a 
unique numerical identifier assigned to it (e.g., node x1 is 
assigned the unique identifier 1, node two is assigned the 
unique identifier 2, and so on). These unique identifiers define 
which position in the encoded string S will be used to define 
that node’s cluster. We can use the next encoding string S: 

S=s1 s2 s3   sN , where si∈{1…M}, i∈{1…N}. 
Therefore, the first character in the string S - s1, indicates 

that the first node (x1) is contained in the cluster labeled s1. 
Likewise, the second node (x2) is contained in the cluster 
labeled s2, and so on. 

 
• Genetic operators 
GAs feature the following three basic operators, which are 

executed sequentially by the GA: 
1. Selection 
2. Crossover 
3. Mutation 
During selection, pairs of individuals are chosen from the 

population according to their fitness. We use in GA 

competition selection. The 2 individuals with the high fitness 
are selected from the old population to be included in the new 
population. This selection is complemented with elitism. 
Elitism guarantees that the fittest individual of the current 
population is copied to the new population. 

Crossover is performed immediately after selection. The 
crossover operator is used to combine the pairs of selected 
strings (parents) to create new strings that potentially have a 
higher fitness than either of their parents. 

During crossover, each pair of strings is split at a random 
position. Two new strings are then created by swapping these 
random characters of the selected individuals. Thus, two 
strings are used to create two new strings, maintaining the 
total population of a generation constant. 

The mutation operator is applied if the strings resulting 
from the crossover process are identical. The mutation is 
applied over one of the string – random exchange of random 
number of nodes between the clusters of one of the solutions 
(one of the individuals). 

After that, we can apply restoring – to satisfy the 
restrictive condition Wo. 

 
III. THE GA ALGORITHM 

GAs use the operators defined above to operate on the 
population through an iterative process, which is as follows: 
1. Generate the initial population, creating a set of 
constructive sequential solutions (strings) of fixed size [4,5]. 
2. Create a new population by applying the selection operator 
to select pairs of strings.  
3. Apply the crossover operator to the pairs of strings of the 
new population. 
4. Apply the mutation operator to each string in the new 
population. 
5. Apply the restoring operator, if the new strings are 
identical. 
6. Replace the old population with the newly created 
population. 
7. If the number of iterations is less than the maximum and the 
population is changed, go to step 2. Else, stop the process and 
display the best answer found. 
 

 
fig.1. Genetc Clustering algorithm 

∑∑
==

≠∀=
Mj

ij
Mi

jikk
..1..1

,



765

 

IV. CONCLUSION 
In this paper we describe a Genetic Algorithm (fig.1) for 

software clustering. Over the past few years we have seen an 
increasing interest and activity in software clustering research 
[1,2,3]. Clustering has been applied in the fields of 
mathematics, social sciences, engineering and biology for 
many years. However, only within the last 25 years have 
researchers investigated and applied clustering techniques to 
the software domain. This work has resulted in new clustering 
techniques, as well as the adaptation of classical clustering 
techniques to the particularities of the software domain. 

Improving Optimization Techniques is one of the new 
research directions in the area of software clustering. Genetic 
algorithms have been shown to produce good results in 
optimizing large problems. Although the initial results with 
the genetic realization in [2] are promising, additional study is 
needed. We are presented an GA algorithm that has an other 
goal function and apply alternative selection and mutation 
operators. Additional  research  is needed to proof the 
effectiveness of this algorithm. 

REFERENCES 
[1]. Comparing the Decompositions Produced by Software 
Clustering Algorithms using Similarity Measurements, Spiros 
Mancoridis and Brian Mitchell 
IEEE Proceedings of the 2001 International Conference on Software 
Maintenance (ICSM'01). IEEE.  
[2]. Spiros Mancoridis, Brian Mitchell, and Diego Doval, Automatic 
Clustering of Software Systems using a Genetic Algorigthm, , IEEE 
Proceedings of the 1999 International Conference on Software Tools 
and Engineering Practice (STEP'99) 
[3]. Search Based Reverse Engineering", by B. S. Mitchell, S. 
Mancoridis, M. Traverso. In the ACM Proceedings of the 2002 
International Conference on Software Engineering and Knowledge 
Engineering (SEKE'02), Ischia, Italy, July, 2002. pp. 431-438.  
[4]. Software Architecture Decomposition, Violeta Bojikova, M. 
Mitev,  Proceedings of the 14th Int’l Conference SAER’2000, Varna, 
2000, pp. 173-177. 
[5]. An Approach to measure the Cost of Program restructuring, 
Violeta Bojikova, M. Karova, Proceedings of papers, Volume 2, pp 
669-671, 2002, Nish, Yugoslavia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


