

767

A Genetic Algorithm
for a Student Timetabling Problem

Milena N. Karova1 Violeta T. Bojikova2 Radoslav E. Mladenov3

Abstract - This paper introduces a flexible method for

scheduling a timetable using a genetic algorithm. The timetabling
problem comes up in every educational institution. It is a special
kind of optimization problem. A timetable is explained as a
schedule with constraints placed upon it. There had been many
attempts to address this problem using classical methods, such as
integer programming and graph theory algorithms without
much success. These methods also are difficult to automate the
process. The solution, which this paper offers, includes a genetic
algorithm implementation in order to give a maximal
approximation of the problem, modifying a generated solution
with genetic operators.

Keywords: genetic algorithm, timetabling, scheduling,
constraints, optimization, approximation, selection, genetic
operator

I. INTRODUCTION

The timetabling problems belong to the NP-hard problems
class and it is quite difficult to solve them with conventional
methods including iterative and recursive algorithms. These
problems are generally characterized as constraint satisfaction
problems. That’s why we use two general categories of
constraints – hard constraints and soft constraints. The basic
objective in solving the problem is to allocate events to time
slots while minimizing constraint violation. This approach
needs robust heuristics which can evolve and evaluate the set
of solution candidates called chromosomes. The scheduling
doesn’t mean just arranging events in the time slots but also
observing some additional rules – teachers may be busy in
certain weekdays, some events may require a specific time
slot and so on.

II. CONSTRAINTS

The genetic algorithm which we use, observes two generic
groups of constraints – soft constraints and hard constraints.
Hard constraints are constraints which mustn’t be broken in
order to have a regular timetable. These include:
 - a teacher giving two or more lessons at the same time
 - a group attending two or more classes at the same time

- a room being occupied by two or more groups at the same
time

1Milena N. Karova is with the department of Computer Science,
Studentska 1, Technical University Varna Email: mkarova@ieee.bg
2Violeta T. Bojikova is with the department of Computer Science,
Studentska 1, Technical University Varna
Email:vbojikova2000@yahoo.com

3Radoslav Mladenov is student, department of Computer Science,
Technical University Varna Email: radoslavmladenov@abv.bg

Such constraints include more sophisticated problems to be
solved – room capacity problems, time violations etc. Hard
constraints have to be taken into consideration very strictly
because the timetables that violate just one of them are
practically unusable. Soft constraints are not so important but
they mustn’t be belittled. They involve restrictions as:

- reducing the void time slots
- setting the lectures before seminaries
- selecting preferred time slots
Soft constraints offer more gentle options for constructing

the timetable. Soft constraints are the tools for customizing a
particular timetable without many efforts. The soft
constraints’ violations will not make a timetable unusable; it
will only be more discursive. A comparison function is
necessary, to define when a chromosome is better than
another chromosome. Comparing two chromosomes (and thus
obtaining the best individual) consists in choosing the
individual with the best hard fitness (in case of ties, choosing
the individual with the best soft fitness). Note that the best
fitness means the lowest fitness factor (the fitness factor is
decreasing with better individuals) and thus maybe a more
appropriate name for this fitness factor would have been
“conflict factor”.

III. EVENTS AND SOLUTIONS

Every single solution generated by the algorithm is
represented by a chromosome. The chromosome itself is an
indivisible unit which forms the total amount of solutions
called generation. Each chromosome is made up of a set of
genes (the smallest information carrying unit of a
chromosome). In our approach, inside the chromosome, there
is a gene for each activity in the timetable. This gene
represents the scheduled time of the corresponding event. So,
a chromosome is actually an array of genes, each gene
representing the starting day and hour of an event.

The chromosomes are built with direct encoding. This
means that the chromosome is not a sequence of logical 0 and
1 but contains more meaningful information. The single most
important attribute of the chromosome is its length. The
length is determined from the total amount of events, taking
part in the schedule. The event is a discrete container which
includes a teacher, a group and a room. Each gene in the
chromosomes represents the time slot for the corresponding
event in the set of events. To reduce the space representation
of the whole solution, we linearize the chromosome. We use 6
fixed time slots per day, so representing a single time slot we
should need a matrix. Linearization removes the

768

indispensability of using a matrix. If there are 5 working days
the matrix will be 6x5, but if we linearize, we will need only a
vector with 30 fields. Then the generation would be a matrix
(not a cube) and the total number of solution candidates would
be a cube (not a 4-dimensional hypercube).

IV. GENETIC OPERATORS

The genetic algorithm we present uses three genetic
operators to perform the evolution process. They are crossover,
mutation and preserving. The crossover is a biological term
which is widely used in the genetic algorithms theory. It is the
phase in our algorithm where we produce new solution
candidates from existing ones. Crossover is committed in two
processes: one is the parent selection, where we select two
chromosomes by following some criteria. In this process we
try to give a better solution using old solutions. After the two
parent chromosomes had been selected, we need to determine
how to combine the two chromosomes to produce new better
solutions. There are two common methods of doing so –
single-point crossover or double-point crossover where we
segment the chromosomes randomly and exchange their
genetic information. We also offer another crossover variation
– crossover with elitism. Elitism is the mechanism of
evaluating and finding the best chromosome from certain
population. We use a single-point crossover which consists of
finding a point of division (it’s randomly chosen) and then
swapping the genetic information between the two adult
chromosomes. The second genetic operator which is used in
the algorithm is the mutation operator. It introduces a rapid
change in the genetic material in a single chromosome. This
operator must be used rarely because it brings unforeseen
changes which are likely to deteriorate the chromosome’s
fitness value. Sometimes mutation surprisingly gives
enormous improvements in the solution’s overall structure.
Mutation ratio should be kept small, often 5% or less because
it is an irreversible process which may worsen the solution
rather than improve it. The last genetic operator we use is the
preserving. It is just copying one solution form the old
population into the new generation.

V. SELECTION AND EVOLUTION

We offer two methods of selection. These are the three-
tournament selection and semi-elitism method. The three-
tournament selection involves selecting three absolutely
random chromosomes from the current generation. They are
evaluated and then sorted ascending. The worst of the three is
eliminated from consequent evolution. In the crossover phase
are used the better two chromosomes and in mutation and
preserving is used only the best of the three randomly chosen
chromosomes. The semi-elitism selection method is a variant
of the classical elitism. It finds the best chromosome but does
not find the next better chromosome. Instead it chooses
randomly the second genetic operand. In mutation and
preservation only the best chromosome of the whole
population takes place. We do not use the best two
chromosomes in crossover due to the aggregate violations
avoiding. It is proven that in most cases the first two best

chromosomes are almost identical and it is likely that
swapping them will give no good result. That’s why we do not
use them.

Selection is not enough to retrieve the new solution
candidates. Evolution is the process of choosing which genetic
operator to execute. There are probabilities for each genetic
operator to switch. The program allows the user to adjust
these values according to the specific situation. We assign a
probabilities area which is units 100 long (if we work in per
cent). Consider the following situation: crossover probability:
85%, mutation probability: 5%, preserve: 10%. The
probabilities area will be divided into three fields: (0,5], (5,90]
and (90,100]. Then a random number between 1 and 100 is
selected and according to the probabilities area, the genetic
operator is chosen. The next step in the implementation of the
genetic algorithm is the evaluation.

VI. EVALUATION

Evaluating the chromosomes is carried out in two phases –
evaluating the hard fitness and the soft fitness of a particular
chromosome. Hard constraints must not be violated in order to
have a useable timetable, so the primary criterion in the
evaluation is the hard fitness value. It is formed as a simple
sum of penalty points. A penalty point is given if a certain
hard constraint isn’t obeyed. The total hard fitness is
evaluated by the following formulae Eq. (1):

∑
=

=
N

k
kfiitnessTotalHardF

0
 (1)

The total hard fitness helps as at evaluating the algorithm’s

overall efficiency. It is used in graphics, visualizing the
sequence of population propagation. Each chromosome is
evaluated with arithmetic sum of its individual time slot
violations. This process looks like Eq. (2):

∑
=

=
n

k
kashTimeSlotClFitness

0
 (2)

n is the total amount of events taking part in the timetable
construction. This is very important because just one violation
in time slots makes the schedule unusable without manual
corrections, but the purpose of our algorithm is to avoid
manual corrections of a generated solution. The soft
constraints evaluation is the same, but when comparing two
chromosomes the hard fitness factor is more important than
the soft fitness factor. The purpose of the genetic algorithm at
all is to fulfill the hard constraints and to reduce the soft
constraints maximally.

VII. EXPERIMENTAL DATA

An experimental implementation was done as a C++ object
oriented program. It directly uses the evolution data for the
particular timetable and draws a graphic which shows how the

769

conflicts go down. The black line represents the hard
constraints and the red line represents the soft fitness. Here we
show how the population size affects the speed of finding a
satisfactory solution. The following table presents the
experiments Table I:

TABLEI

Population size Selection
32 Tournament
32 Semi-elitism
128 Tournament
128 Semi-elitism

First, we experiment with a population of 32 solution
candidates using tournament selection. The result is shown in
the following figure Fig. 1:

Fig. 1

The population number 439 contains a chromosome which
is fulfilled every hard constraint in its set. The next figure
shows the results of the same population size, but using
elitism Fig. 2:

Fig. 2

It is obvious that using elitism reduces the total number of
generations which are evolved. Also the better solution is
found faster than the tournament selection. The population
size here is more important than the selection method. The
following two figures show how the solution improves faster
and faster when the population size is 128. The time taken
however increases as the population size increases, so when
dealing with larger data sets it’s necessary to choose the most
appropriate population size. Fig. 3 shows that when the
population size is bigger, the number of generations is lower.
It’s using a tournament selection.

Fig. 3

The fourth experiment is the same as the third experiment
except for the selection method. Here is used elitism which
reduces the generations Fig. 4.

Fig. 4

All of the above experiments use these genetic operator
probabilities:
Crossover – 87%

770

Mutation – 5%
Preserving – 8%

The program allows these values to be adjusted whenever
the user wants to do so. For the bulk of data sets the above
values give pretty good results and that’s why we used them
in the experiments.

VIII. CONCLUSION

We presented a algorithm for solving timetabling problems,
which combines principles of the local search with other
techniques for solving constraint satisfaction problems. The
proposed principles can be applied to other constraints
satisfaction problems; they can be easily extended to cover
additional hard and soft constraints.

Further research is oriented both theoretically, to formalize
the techniques and to put them in a wider context of constraint
programming, and practically, to implement the above
described genetic algorithm.

REFERENCES

[1] Abramson D., Abela, A Parallel genetic algorithm for Solving
the school Timetabling Problem., Royal Melbourne Institute of
technology, 1991
[2] Burke E., Ross P., Practice and Theory of Automated
Timetabling. Lectures Notes In Computer Science Springer, Berlin
1996
[3] Michalewicz Z., Janikow C., Handling constraints in genetic
algorithms. In Proceeding of the 4th International Conference in Gas.
Morgan Kauffman, 1991.
[4] Michalewicz Z, Genetic Algorithms+ Data Structures =
Evolution Programs, Springer Verlag, 1992.
[5] Syswerda G. Uniform crossover in genetic algorithms.
Proceeding of Third International Conference of Genetic algorithms
[6] Corne D., Ogden J., Evolutionary Optimisation of Methodist
Preaching Timetables, Selected papers from the Second International
Conference on Practice and Theory of Automated Timetabling II,
p.142-155, August 20-22 1997.
[7] Goldberg D., Web courses, http://www.engr.uiuc.edu/OCEE,
2000

