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A Genetic Algorithm 
for a Student Timetabling Problem 
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Abstract - This paper introduces a flexible method for 

scheduling a timetable using a genetic algorithm. The timetabling 
problem comes up in every educational institution. It is a special 
kind of optimization problem. A timetable is explained as a 
schedule with constraints placed upon it. There had been many 
attempts to address this problem using classical methods, such as 
integer programming and graph theory algorithms without 
much success. These methods also are difficult to automate the 
process. The solution, which this paper offers, includes a genetic 
algorithm implementation in order to give a maximal 
approximation of the problem, modifying a generated solution 
with genetic operators. 
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I. INTRODUCTION 

The timetabling problems belong to the NP-hard problems 
class and it is quite difficult to solve them with conventional 
methods including iterative and recursive algorithms. These 
problems are generally characterized as constraint satisfaction 
problems. That’s why we use two general categories of 
constraints – hard constraints and soft constraints. The basic 
objective in solving the problem is to allocate events to time 
slots while minimizing constraint violation. This approach 
needs robust heuristics which can evolve and evaluate the set 
of solution candidates called chromosomes. The scheduling 
doesn’t mean just arranging events in the time slots but also 
observing some additional rules – teachers may be busy in 
certain weekdays, some events may require a specific time 
slot and so on. 

II. CONSTRAINTS 

The genetic algorithm which we use, observes two generic 
groups of constraints – soft constraints and hard constraints. 
Hard constraints are constraints which mustn’t be broken in 
order to have a regular timetable. These include: 
 - a teacher giving two or more lessons at the same time 
 - a group attending two or more classes at the same time 

- a room being occupied by two or more groups at the same             
time 
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Such constraints include more sophisticated problems to be 
solved – room capacity problems, time violations etc. Hard 
constraints have to be taken into consideration very strictly 
because the timetables that violate just one of them are 
practically unusable. Soft constraints are not so important but 
they mustn’t be belittled. They involve restrictions as: 

- reducing the void time slots 
- setting the lectures before seminaries 
- selecting preferred time slots 
Soft constraints offer more gentle options for constructing 

the timetable. Soft constraints are the tools for customizing a 
particular timetable without many efforts. The soft 
constraints’ violations will not make a timetable unusable; it 
will only be more discursive. A comparison function is 
necessary, to define when a chromosome is better than 
another chromosome. Comparing two chromosomes (and thus 
obtaining the best individual) consists in choosing the 
individual with the best hard fitness (in case of ties, choosing 
the individual with the best soft fitness). Note that the best 
fitness means the lowest fitness factor (the fitness factor is 
decreasing with better individuals) and thus maybe a more 
appropriate name for this fitness factor would have been 
“conflict factor”. 

III. EVENTS AND SOLUTIONS 

Every single solution generated by the algorithm is 
represented by a chromosome. The chromosome itself is an 
indivisible unit which forms the total amount of solutions 
called generation. Each chromosome is made up of a set of 
genes (the smallest information carrying unit of a 
chromosome). In our approach, inside the chromosome, there 
is a gene for each activity in the timetable. This gene 
represents the scheduled time of the corresponding event. So, 
a chromosome is actually an array of genes, each gene 
representing the starting day and hour of an event. 

The chromosomes are built with direct encoding. This 
means that the chromosome is not a sequence of logical 0 and 
1 but contains more meaningful information. The single most 
important attribute of the chromosome is its length. The 
length is determined from the total amount of events, taking 
part in the schedule. The event is a discrete container which 
includes a teacher, a group and a room. Each gene in the 
chromosomes represents the time slot for the corresponding 
event in the set of events. To reduce the space representation 
of the whole solution, we linearize the chromosome. We use 6 
fixed time slots per day, so representing a single time slot we 
should need a matrix. Linearization removes the 
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indispensability of using a matrix. If there are 5 working days 
the matrix will be 6x5, but if we linearize, we will need only a 
vector with 30 fields. Then the generation would be a matrix 
(not a cube) and the total number of solution candidates would 
be a cube (not a 4-dimensional hypercube).  

IV. GENETIC OPERATORS 

The genetic algorithm we present uses three genetic 
operators to perform the evolution process. They are crossover, 
mutation and preserving. The crossover is a biological term 
which is widely used in the genetic algorithms theory. It is the 
phase in our algorithm where we produce new solution 
candidates from existing ones. Crossover is committed in two 
processes: one is the parent selection, where we select two 
chromosomes by following some criteria. In this process we 
try to give a better solution using old solutions. After the two 
parent chromosomes had been selected, we need to determine 
how to combine the two chromosomes to produce new better 
solutions. There are two common methods of doing so – 
single-point crossover or double-point crossover where we 
segment the chromosomes randomly and exchange their 
genetic information. We also offer another crossover variation 
– crossover with elitism. Elitism is the mechanism of 
evaluating and finding the best chromosome from certain 
population. We use a single-point crossover which consists of 
finding a point of division (it’s randomly chosen) and then 
swapping the genetic information between the two adult 
chromosomes. The second genetic operator which is used in 
the algorithm is the mutation operator. It introduces a rapid 
change in the genetic material in a single chromosome. This 
operator must be used rarely because it brings unforeseen 
changes which are likely to deteriorate the chromosome’s 
fitness value. Sometimes mutation surprisingly gives 
enormous improvements in the solution’s overall structure. 
Mutation ratio should be kept small, often 5% or less because 
it is an irreversible process which may worsen the solution 
rather than improve it. The last genetic operator we use is the 
preserving. It is just copying one solution form the old 
population into the new generation.  

V. SELECTION AND EVOLUTION 

We offer two methods of selection. These are the three-
tournament selection and semi-elitism method. The three-
tournament selection involves selecting three absolutely 
random chromosomes from the current generation. They are 
evaluated and then sorted ascending. The worst of the three is 
eliminated from consequent evolution. In the crossover phase 
are used the better two chromosomes and in mutation and 
preserving is used only the best of the three randomly chosen 
chromosomes. The semi-elitism selection method is a variant 
of the classical elitism. It finds the best chromosome but does 
not find the next better chromosome. Instead it chooses 
randomly the second genetic operand. In mutation and 
preservation only the best chromosome of the whole 
population takes place. We do not use the best two 
chromosomes in crossover due to the aggregate violations 
avoiding. It is proven that in most cases the first two best 

chromosomes are almost identical and it is likely that 
swapping them will give no good result. That’s why we do not 
use them. 

Selection is not enough to retrieve the new solution 
candidates. Evolution is the process of choosing which genetic 
operator to execute. There are probabilities for each genetic 
operator to switch. The program allows the user to adjust 
these values according to the specific situation. We assign a 
probabilities area which is units 100 long (if we work in per 
cent). Consider the following situation: crossover probability: 
85%, mutation probability: 5%, preserve: 10%. The 
probabilities area will be divided into three fields: (0,5], (5,90] 
and (90,100]. Then a random number between 1 and 100 is 
selected and according to the probabilities area, the genetic 
operator is chosen. The next step in the implementation of the 
genetic algorithm is the evaluation. 

VI. EVALUATION 

Evaluating the chromosomes is carried out in two phases – 
evaluating the hard fitness and the soft fitness of a particular 
chromosome. Hard constraints must not be violated in order to 
have a useable timetable, so the primary criterion in the 
evaluation is the hard fitness value. It is formed as a simple 
sum of penalty points. A penalty point is given if a certain 
hard constraint isn’t obeyed. The total hard fitness is 
evaluated by the following formulae Eq. (1): 
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The total hard fitness helps as at evaluating the algorithm’s 

overall efficiency. It is used in graphics, visualizing the 
sequence of population propagation. Each chromosome is 
evaluated with arithmetic sum of its individual time slot 
violations. This process looks like Eq. (2): 
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n is the total amount of events taking part in the timetable 
construction. This is very important because just one violation 
in time slots makes the schedule unusable without manual 
corrections, but the purpose of our algorithm is to avoid 
manual corrections of a generated solution. The soft 
constraints evaluation is the same, but when comparing two 
chromosomes the hard fitness factor is more important than 
the soft fitness factor. The purpose of the genetic algorithm at 
all is to fulfill the hard constraints and to reduce the soft 
constraints maximally. 

VII. EXPERIMENTAL DATA 

An experimental implementation was done as a C++ object 
oriented program. It directly uses the evolution data for the 
particular timetable and draws a graphic which shows how the 
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conflicts go down. The black line represents the hard 
constraints and the red line represents the soft fitness. Here we 
show how the population size affects the speed of finding a 
satisfactory solution. The following table presents the 
experiments Table I: 

 
TABLEI 

Population size Selection 
32 Tournament 
32 Semi-elitism 
128 Tournament 
128 Semi-elitism 
 
 

First, we experiment with a population of 32 solution 
candidates using tournament selection. The result is shown in 
the following figure Fig. 1: 

 

 
 

Fig. 1 
 

The population number 439 contains a chromosome which 
is fulfilled every hard constraint in its set. The next figure 
shows the results of the same population size, but using 
elitism Fig. 2: 
 

 
 

Fig. 2 
 

It is obvious that using elitism reduces the total number of 
generations which are evolved. Also the better solution is 
found faster than the tournament selection. The population 
size here is more important than the selection method. The 
following two figures show how the solution improves faster 
and faster when the population size is 128. The time taken 
however increases as the population size increases, so when 
dealing with larger data sets it’s necessary to choose the most 
appropriate population size. Fig. 3 shows that when the 
population size is bigger, the number of generations is lower. 
It’s using a tournament selection. 
 

 
 

Fig. 3 
 

The fourth experiment is the same as the third experiment 
except for the selection method. Here is used elitism which 
reduces the generations Fig. 4. 
 

 
 

Fig. 4 
 

All of the above experiments use these genetic operator 
probabilities: 
Crossover – 87% 
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Mutation – 5% 
Preserving – 8% 

The program allows these values to be adjusted whenever 
the user wants to do so. For the bulk of data sets the above 
values give pretty good results and that’s why we used them 
in the experiments. 

VIII. CONCLUSION 

We presented a algorithm for solving timetabling problems, 
which combines principles of the local search with other 
techniques for solving constraint satisfaction problems. The 
proposed principles can be applied to other constraints 
satisfaction problems; they can be easily extended to cover 
additional hard and soft constraints. 

Further research is oriented both theoretically, to formalize 
the techniques and to put them in a wider context of constraint 
programming, and practically, to implement the above 
described genetic algorithm. 
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