Analysis. Parameters. Characteristics and Circuits with PIN Photodiodes for Multielement Photodetectors

Ivan S. Kolev and Tsanko V. Karadzhov

Abstract – A photodiode is a photodetector which is characterized with an internal photoeffect and a PN junction without internal amplification of the photocurrent. It has the fastest response of all types of photodetectors. Photodiodes are mainly made of silicon – Si and germanium – Ge. They are usually divided into three types – photodiodes with PN junction, PIN photodiodes and avalanche photodiodes. A detailed classification of the photodiodes is shown in Application. 1.

Keywords – Photodiode, Photodetector, Photocurrent, Dark current.

I. OPERATION MODES

Photodiodes operate in two main modes – photodiode and photogalvanic. At photodiode mode (Fig. 1), the photodiode is energized with inverse voltage from an external source. The reverse current through it depends upon the illuminance. At photogalvanic mode (Fig. 2), the photodiode generates photoelectromotive force at illuminance without availability of an external source.

Ivan S. Kolev. Department of Electronics, Technical University – Gabrovo, Street "Hadji Dimiter" No. 4, 5300 Gabrovo, Bulgaria, phone: +359 66 801064.

Tsanko V. Karadzhov. Department of Electronics, Technical University – Gabrovo, Street "Hadji Dimiter" No. 4, 5300 Gabrovo, Bulgaria, phone: +359 66 801064, e-mail: karadjov_st@abv.bg In PIN photodiodes there is a layer with intrinsic conduction (i-layer) among the layers with different conduction. Therefore they have higher sensitivity, smaller barrier capacity and possess good frequency characteristics (limit frequency over 1GHz).

When operating in photodiode mode, it can be written down about the voltage upon the photodiode:

$$U = I_{vh} \cdot R_L - E \tag{1}$$

where I_{ph} – photocurrent;

U – inverse voltage on the photodiode;

R_L – load resistance.

The current through the photodiode is:

$$I = I_D \left(e^{\frac{U}{m.\phi_T}} - 1 \right) - I_{ph}$$
⁽²⁾

where I_D – dark current;

M – coefficient (1÷1.5), showing the deviation from the ideal volt-ampere characteristic of the PN junction; ϕ_T – temperature potential.

$$\varphi_T = \frac{kT}{q} \tag{3}$$

where k - Boltzmann's constant;

T – temperature, °K;

q – electron charge

At photogalvanic mode (Fig. 2), the photoelectromotive tension is:

$$E_{ph} = m.\varphi_T \ln\left(1 + \frac{I_{ph}}{I_D}\right) \tag{4}$$

where: I_{ph} – photocurrent generator; I_D – dark current generator;

An equivalent photodiode circuit is presented in Fig. 3 R_{PN} – non-linear incremental resistance of the PN junction; Cb – barrier capacity;

R – base and junctions low-ohmic series resistance.

The incremental resistance of the photodiode depends on the applied inverse voltage and the illuminance and its value is $10^6 \div 10^9 \Omega$. The diode capacity also depends on the applied inverse voltage.

The maximum limit frequency of the photodiode at $R{<\!\!<\!}R_{\text{PN}}$ is:

$$f_{MAX} = \frac{1}{2\pi RCb} \left(1 + \frac{R}{R_{PN}}\right) \approx \frac{1}{2\pi RCb}$$
(5)

There are three main types of photodiodes in accordance with the wavelength λ : (850÷940) nm – Si-photodiode, 1300 nm – Ge photodiode, 1550 nm – InGaAs photodiode.

II. FREQUENCY CHARACTERISTICS OF THE PHOTODIODES

The law, in accordance with which the output photodiode current is changed at switching on and switching off, is expressed through the following transition functions:

$$h_{1}(t) = K \left(1 - e^{-\frac{t}{\tau}} \right)$$

$$h_{1}(t) = K \left(e^{-\frac{t}{\tau}} \right)$$
(6)
(7)

where τ is the time constant of the photodiode.

III. TIPES OF PHOTODIODES

A. PIN photodiodes with optical tails

The structure of such a photodiode is shown in Fig.4. It contains $(20\div30)$ cm of optical fiber connected to the photodiode through an optical coupling. It finds application in optical communications by means of optical fibers and cables.

B. PIN photodiodes with a digital output

They are used as photodetectors in optical lines or infrared channels for digital information transmission (Fig. 5).

B. PIN photodiodes with an analogue output

They have a built-in operational amplifier with a feedback resistor in the diode case (Fig.6).

IV. CHARACTERISTICS OF THE PIN PHOTODIODES

The characteristics of a silicon PIN photodiode made by Telefunken are shown as an example.

- Lux-ampere (light) characteristic – it shows the dependence of the photocurrent upon the illuminance at constant supply voltage I_{ph} =f(E_V) - Fig. 7;

- Spectral characteristic – it expresses the dependence of the photocurrent upon the wavelength at constant voltage and constant power of the irradiating luminous flux $I_{ph}=f(\lambda)$, Fig.8;

- Volt-ampere characteristic – it is a dependence of the photocurrent upon the applied voltage at a constant luminous flux $I_R=f(U_R)$ - Fig. 9;

- Dependence of the photoelectromotive voltage upon the illuminance E_{ph} =f(E_V);

- Thermodependence of the photocurrent $I_{ph}=f(T)$;

- Thermodependence of the dark current $I_D = f(T)$;

- Thermodependence of the photoelectromotive voltage $E_{ph}=f(T);$

- Dependence of the capacity upon the applied voltage.

V. MAIN PARAMETERS OF THE PHOTODIODES

Operating inverse	Voltage, at which the photodiode
voltage	does not change its nominal
U _R , V	parameters if it has operated long
	enough.
Dark resistance R_D , Ω	Photodiode resistance in the
	absence of the light falling upon it
Dark current I _D , A	Current flowing through the
	photodiode at a specific voltage
	and luminous flux absence
Light resistance R_{ph} , Ω	Resistance of the photodiode when
	irradiating it by luminoius flux in
	the range of its spectral sensitivity
Photocurrent I _{ph} , A	Current flowing through the
-	photodiode at a specified voltage
	and luminous flux radiation upon
	the photodiode
Common current I, A	Photodiode current consisting of
	the photocurrent and the dark
	current
Integral sensitivity S,	Relationship between the
A/lm	photocurrent variation and the

	lunminous flux change
Spectral sensitivity S_{λ}	Dependence of the photodiode
	sensitivity upon the wavelength
Current impulse	Relation of the photocurrent
sensitivity S _{imp} , A/W	amplitude to the impulse power
- 1	amplitude of the radiating
	luminous flux
Noise current I _{nois} , A	Mean square value of the
	photodiode dark current variation
Noise voltage U _{nois} , A	Mean square value of the
	photodiode dark voltage variation
Sensitivity threshold D,	Mean square value of the
lm	modulated fixed spectrum
	luminous flux acting upon the
	diode at which the mean square
	value of the photocurrent (voltage)
	is equal to the mean square value
	of the noise current (voltage)
Rise time t_r , s	Minimum time interval necessary
	for transition from $(0.1\div0.9)$ of
	the fixed photocurrent or voltage
	value upon the photodiode
Decay time t_d , s	Minimum time interval necessary
	for transition from $(0.9\div0.1)$ of
	the fixed photocurrent or voltage
	value to the photodiode
Limit frequency f_0 , Hz	Frequency of the sinusoidal
	luminous flux, at which the
	pnotodiode sensitivity fails to level
	0.707 of the sensitivity of constant
	iuminous ilux
Finite Capacity C,	Capacity of the photodiode PN
	TIUNCHON

VI. CONCLUSION

The results of this paper will be used for lectures and seminars with students in the programmes of "Optoelectronics" и "Optoelectronics and Optical Communications".

REFERENCES

[1] Siemens. Si-Photodetectors and IR Emitters, Reference Book, 1995.

[2] Vishay Telefunken. Reference Book, 1999.

[3] И. С. Колев. Инфрачервена оптоелектроника. Габрово,

Унив. изд. Васил Априлов, 2003.

[4] И. С. Колев, Т. С. Тодоров. Оптрони и приложението им. София, Техника, 1988.

[5] http://www.mitelsemi.com

