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Two Samples per Bit Interval Detection of NCFSK Signal 
in Presence of White Gaussian Noise and Interference 

Petar C. Spalevic1, Selena Z. Stanojcic2, Hana Z. Popovic3, Srdjan M. Jovkovic4 

Abstract – In this paper, an analysis of non – coherent FSK 
signal in the presence of Gaussian noise and channel interference 
has been performed. In receiver, decision is made on the bases of 
two samples during one bit – interval. We express the conditional 
probability density function for signals in both detector 
branches. Also, bit error probability versus signal to noise ratio, 
for different values of signal to interference ratio, is plotted.   

Keywords – NCFSK receiver, White Gaussian noise, 
Interference, Bit  error probability. 

I. INTRODUCTION 

Frequency shift keying (FSK) is commonly used form of 
digital modulation in the high-frequency radio spectrum, and 
has important applications in telephone circuits. Binary FSK 
(usually referred to simply as FSK) is a modulation scheme 
allowing the data transmission by shifting the frequency of a 
continuous carrier in a binary manner to one or the other of 
two discrete frequencies. One frequency is designated as the 
“mark” frequency and the other as the “space” frequency. The 
mark and space correspond to binary one and zero, 
respectively. By convention, mark corresponds to the higher 
radio frequency. FSK modulation (Frequency Shift Key) is 
commonly believed to perform better than ASK and PSK in 
the presence of interfering signals. However, it is usually 
more difficult and expensive to implement. [1] 

 FSK signal can be transmitted coherently or 
noncoherently. Coherency implies that the phase of each mark 
or space tone has a fixed phase relationship with respect to a 
reference. Coherent FSK is capable of superior error 
performance but noncoherent FSK is simpler to generate and 
is used for the majority of FSK transmissions. Noncoherent 
FSK has no special phase relationship between consecutive 
elements, and, in general, the phase varies randomly. 

Noncoherent FSK modulation is based on the system 
modeled with two matched filters centered at 0ω  and 1ω  
with envelope detectors summed to a decision circuit [2].  
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This model suggests that non-coherent FSK modulation 
can be treated as two ASK signals, one at frequency 0ω  and 

the other at frequency 1ω . 
Optimum demodulation of non-coherent FSK can be 

achieved by envelope detection of the signal filter outputs in a 
filter-type demodulator. The outputs of the mark and space 
filters are envelope-detected and then compared to determine 
which has greater magnitude.  

The phase information is not required. With the “right” 
filter shape, performance of this type of demodulator 
approaches the theoretical optimum for noncoherent FSK. The 
“right” filter shape for a white noise interference environment 
is one that has the same spectral shape as the transmitted 
signal. For the “rectangular” modulation of FSK, the right 
shape is a function (sin x)/x bandpass filter centered about the 
desired mark or space tone.  

II. THE SYSTEM ANALYSIS 

Gaussian noise and disturbances are inevitable in 
telecommunication systems. Typical interferences usually 
have sinusoidal form. It is interesting to analyze the influence 
of sinusoidal interferences and Gaussian noise on the system 
error.  

This paper presents an analysis of the digitally modulated 
signal with two symbols in presence of Gaussian noise and 
sinusoidal interference. In Figure 1. the block diagram for 
noncoherent detection of FSK signal is shown. 

 
Fig. 1. Block diagram of the receiver for noncoherent detection of  

2 - FSK signal 
 

We supposed that filter in the upper branch passes just the 
elemental signal of ``1``, while the filter in the lower branch 
passes the elemental signal of ``0``. Besides, the central 
frequencies 0ω  and 1ω  are sufficiently spaced so the bands 
of these filters are not overlapping in the frequency domain. 
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Each branch contains an ideal envelope detector after filter. In 
the moment of decision making (if ``0`` or ``1`` is sent), the 
instantaneous difference of the two envelopes is compared to 
the decision threshold.  

We consider a signal containing two components at 
frequencies ω0 and ω1 and presented with two pulses of 
duration T.  

In real systems it is generally T >> T0, T1, so the modulated 
carrier signal can be analytically presented as: 

H0:  ``0`` is sent: 
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Gaussian noise can be analytically presented as:  
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A disturbance signal generally interferes with one of the 
components, so it can be taken as:  

)cos()( 1011 θ+ω= tAti       (4) 

Filtering the signal at the output of band pass filter at ω0 
results in component of the signal at frequency ω0, narrow 
band noise and disturbance at frequency ω0. Likewise, the 
output of band pass filter at ω1 consists of the signal at 
frequency ω1 and narrow band noise, since the disturbance is 
eliminated. In proposed cases, this can be written as: 
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In the frequency domain, the envelope detector translates 
the spectrum of the useful signal from the region of the high 
frequencies to baseband. In the time domain, it forms a 
sequence of pulses containing the modulating digital signal. 

Digital signal envelope detectors contain also a decision 
block, which generates a sequence of pulses, despite of 
presence of noise and disturbances. The output of envelope 
detector in the upper branch in case of hypothesis H0 is the 
symbol 1 in the first half - period and 0 in the second, and in 
case of hypothesis H1 it will be 0 in the first half - period and 
1 in the second. Likewise, the envelope detector output in the 
lower branch will be 0 in the first and 1 in the second half - 
period in the case of hypothesis H0, and 1 in the first and 0 in 
the second half period in the case of hypothesis H1. 

III. DETERMINATION OF THE PROBABILITY DENSITY 
FUNCTION 

At the output of the envelope detector, the signals ijkz  are 
analyzed. In this case we can use the following notations: 

i = {0, 1}, whether 0 or 1 is sent; (code domain) 

j = {0, 1} whether upper or lower branch with bandpass 
filter is considered; (space domain) 

k = {1, 2} whether the first or the second half - period is 
considered; (time domain). 

Since both branches are subject to noise and one is subject 
to disturbance, we derive joint conditional probability density 
functions for different hypothesis in time and space domains.  

( )002001, zzp - represent combined probability density 
function of the signal “0” in upper branch during the whole 
period given by: 
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R represents reference parameter of the envelope for both 
sampling moments. We suppose the uniform distribution of 
( )θp . 1ϕ  and 2ϕ represent the refererent phasing for the  z0 

and z1 processes. They are given by the following 
expressions: 
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( )012011 , zzp - combined probability density function of 
the signal “0” in lower branch during the whole period and is 
given by: 
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( )102101, zzp  - combined probability density function of 
the signal “1” in upper branch during the whole period. It is 
given by:  
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( )112111, zzp  - Combined probability density function of 
the signal “1” in lower branch during the whole period and it 
is given by:  
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The system output during the whole period in case the 
symbol “0” is sent, is: 

H0: 
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Combined probability density function for symbol “0” is 
therefore: 
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The output during the whole period if the symbol “1” is 
sent will be: 

H1: 
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Combined probability density function for symbol “1” is 

therefore: 
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The decision area 1ℑ , for symbol “1”, contains all the 
( )21, zz pairs giving the likelihood ratio ( ) 0λλ >r [3]. On the 
other side, the decision area 0ℑ , for symbol “0”, contains all 
the ( )21, zz pairs giving the likelihood ratio ( ) 0λλ <r .  From 
these equations the error probability can be determined [4].. 

IV. THE  BIT ERROR PROBABILITY 

The main parameter that characterizes the system 
performances, that is, the quality of telecommunication 
service, is the bit error probability. Analytical expression for 
the bit error probability Pe is derived directly from previous 
equations: 
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where ( )210 , zzp  and ( )211 , zzp  represent probability density 

functions for H0 and H1, respectively. Integrals ∫∫
ℑ0

 and 

∫∫
ℑ1

represent the probabilities that ``0`` is detected when 

``1`` is sent, and that ``1`` is detected when ``0`` is sent, 



434 

respectively. The decision area is obtained relative to the 
likelihood ratio ( ) 0λλ >r [5]. 

The bit error probability dependence on SNR, for three 
values of signal to interference ratio, is given in Figs. 2 and 3.  
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Fig. 2. The bit error probability of the system with respect to SNR,  
for three different values of  SIR and parameter  Rav = 0. 3. 
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Fig. 3. The bit error probability of the system with respect to SNR,  
for three different values of  SIR and parameter  Rav = 0. 4. 

These plots show that increasing the SNR results in 
decreasing the bit error probability. The best performances are 
gained for SIR = 20 dB 

V. CONCLUSION 

This paper presents expressions to evaluate the bit error 
probability for noncoherent frequency shift keying (NCFSK) 
system over digital channel with white Gaussian noise and 
channel interference. In receiver, decision is made on the 
bases of two samples per bit interval. The probability density 
function with respect to whether ``0`` or ``1`` is sent, is 
determined for both cases.  

The system performances, i.e. the bit error probability is 
discussed in terms of different values of the SNR. As 
expected, the bit error probability is decreasing (the 
performances are better) when rising of SNR. Such system 
gives significantly better performances but is somewhat less 
cost effective. 
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