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Computing Minimum Cost Spanning Tree on Linear 
Unidirectional Systolic Array  

E. I. Milovanović1, I. Ž. Milovanović2, B. M. Randjelović3 
 

Abstract –A problem of finding MCST of a given graph is 
considered. The problem is partitioned into two parts. First, we  
compute a wighted matrix, D(n),  according to weighted matrix, 
D(0), of a given graph. Second, MCST is determined by 
comparing matrices D(n) and D(0). To solve the first problem we 
designed unidirectional linear systolic array with optimal 
number of PEs and minimize the execution time. The secdond is 
performed by the host computer. 

Keywords – Systolic array, Minimum cost spanning tree.  

I. INTRODUCTION 

The minimum cost spanning tree (MCST) of a graph 
defines the cheapest subset of edges that keeps the graph in 
one connected component. The MCST problem arises in a 
number of applications, both as a stand-alone problem and as 
a sub problem in more complex problem settings. It is perhaps 
the simplest, and certainly one of the most central, models in 
the field of network optimisation.  

The problem of finding MCST can be formulated as 
follows. Consider a connected undirected or directed graph, 
G=( V,E), where V={1,2,...,n} is the set of vertices and E is 
the set of edges. Associated with each edge (i,j) in E is a cost 

ijd . Thus, weighted matrix )( )0()0(
ijdD = of order nxn which 

corresponds to graf G can be described  as 
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 for each ni ,,2,1 K=  and nj ,,2,1 K= . The problem is to 
find a rooted spanning tree, G=(V,E’) where E’ is a subset of 
E such that the sum of ijd  for all (i,j) in E’ is minimized. The 
spanning tree is defined as a graph which connects, without 
any cycle, all nodes with n-1 arcs, i.e., each node, except the 
root, has one and only one incoming arc. Note that a minimum 
cost spanning tree is not necessarily unique. This problem can 
be solved by many different algorithms. The first algorithm 
for finding MST was developed by Czech scientist Otakar 
Boruvka in 1926 [1-2]. Now, there are two algorithms 
commonly used, Prim’s algorithm and Kruskal’s algorithm 
[3], [4]. In this paper we will use an algorithm equivalent 
to Warshall’s [5] and Floyd’s algorithms [6] for computing 
transitive closure and shortest path in a given graph.  
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In order to find MCST we start from the matrix )( )0()0(
ijdD =  

and compute a series of matrices nkdD k
ij

k ,,2,1),( )()( K== , 
according to the following algorithm: 

     Algorithm_1 
for k:=1 to n do 

for i:=1 to n do 
for j:=1 to n do 

}},max{,min{: )1()1()1()( −−−= k
kj

k
ik

k
ij

k
ij dddd  

In the second step matrix )0(D  is compared with matrix 
)(nD . An edge (i,j), Eji ∈),( , is added to MCST if and only 

if )0()(
ij

n
ij dd =  for ni ,,2,1 K=  and nj ,,2,1 K= . 

In this paper we are interested in finding matrix )(nD , only. 
The comparison and computation of the cost is left for the 
host computer. In order to compute )(nD  we use 
unidirectional linear systolic array (ULSA). Because of the 
problem dimension and data dependencies in the 
corresponding data dependency graph, Algorithm_1 is not 
suitable for direct synthesis of ULSA. To overcome this 
problem we partition the computations in Algorithm_1 into 
appropriate number of two-dimensional entities which are 
then computed on the ULSA The final result is obtained by 
repeating the computation n times  on the designed ULSA. 
We require that designed ULSA is space-optimal with respect 
to a problem size and the execution time should be as minimal 
as possible for a given size of ULSA.           

II. THE SYSTOLIC ALGORITHM  

In order to obtain two-dimensional entities suitable for the 
synthesis of ULSA with desired properties, it is obvious that 
one of index variables in Algorithm_1 should be fixed on 
some constant value. The computation in Algorithm_1 does 
not depend on whether it is performed first on index variable i 
or j. In other words the loops on index variables i and j can be 
permuted. Therefore, without lost of generality, assume that 
index variable i is outer and fixed to some constant value. 
Two-dimensional entities obtained by setting i to some 
constant value in Algorithm_1 are nidM k

iji ,...,2,1),( )( == . 

The dependencies between different niM i ,...,2,1, =  are very 
complex. Namely, it is not possible to compute iM  only 
according to 10, −≤≤ itM t . Therefore, the computation of 
different iM  is not suitable for systolic implementation. The 
same conclusion would be obtained if j is fixed. Therefore, 
only index variable k has left. Let us note that index variable k 
is an iterative one in Algorithm_1. The computations in SA 
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are usually performed such that resulting elements are 
pipelined through the array unless SA with fixed number of 
PEs is concerned or the array where resulting elements are 
accumulated in PEs. We do not use neither of the approaches 
in this paper. Instead, we partition the computations in 
Algorithm_1 into two-dimensional entities )( )()( k

ij
k dD = , for 

some fixed k=1,2,...,n. The computation of )(kD depends only 
on )1( −kD . This means that the computations of )1(D ,..., )(nD  
can be performed successively, which is very important for 
our approach.  It is enough to synthesize ULSA that computes 

)1(D and then use it to compute )(nD  by repeating the 
computations n times. 

To ease the presentation we use the following denotation 
)1()0()0()0(

1 )1,,(,)0,(,)1,,0(,)1,0,( ijijiji djicdjicdjbdia ====   (1) 

for i=1,2,...,n and j=1,2,...,n. The corresponding systolic 
algorithm has the following form 

Algorithm_2 
 for i:=1  to n do 
 for j:=1 to n do  

)}}1,,(),1,,(max{),0,,(min{:)1,,(
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The inner computation space of Algorithm_2 is 
}1,1|)1,,{(int njnijiP ≤≤≤≤=                    (2) 

and the corresponding dependency matrix is 
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Different linear SAs can be obtained by mapping (D, Pint) 
along different projection direction vectors. Namely, each 
projection direction vector is associated with the 
corresponding space-time transformation matrix T which 
maps a computational structure of the algorithm (D, Pint) into 
a systolic implementation. Matrix  T is of the form [9]: 
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where Π
r

 determines time scheduling, while S is space 
transformation which maps (D, Pint) into 1D systolic array. 
ULSA can be obtained for the direction projection vector 

[ ]T011 −=µ
r  (see, for example [7-8]). However, this 

direction is not a permissible one for the Algorithm_2. 
Namely, if from the set of possible transformation matrices 
for this direction the following one 
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is chosen arbitrarily, then according to mapping ∆→DS : , 
i.e. according to  
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which represents the direction of data flow in the systolic 
array, we conclude that [ ]Tab ee 0122 ==

rr
meaning that 

elements of vectors b
r

and a
r

 propagate through the array in 
the same direction. This will cause that the same partial 
product is computed in all PEs, leading to incorrect 
computation. One way to solve this problem is to introduce 
the delay elements between neighbouring PEs. This will result 
in different data speed of b

r
and a

r
elements through the array. 

If we put delay elements on b
r

path, then 2
be
r  will be half of 

the 2
ae
r  i.e. 22

2
1

ab ee
rr

= . From the algorithmic point of view, 

we need to introduce additional index space,  

}1,1|)1,,
2
1{( njnijiPd ≤≤≤≤−=                  (6) 

and new dependency matrix  
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Let us note that in index points of space Pd no computation is 
performed. Elements of vector b

r
are just copied (i.e. delayed 

for one cycle). Now, according to (2), (6) and (7) we construct 
a new systolic algorithm, equivalent to Algorithm_2 which 
computes D(1), for which the direction [ ]T011 −=µ

r  is a 
permissible one. The algorithm has the following form 

Algorithm_3 
 for i:=1  to n do 
 for j:=1 to n do  
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The ULSA obtained according to Algorithm_3 computes D(1) 
correctly, but according to Pint, defined by (2) and space 
transformation S, defined by (4), it has 12 −=Ω n  PEs which 
is too large for a given problem size. Space-optimal ULSA 
should have n PEs. In order to obtain ULSA with optimal 
number of PEs, the inner computation space Pint has to be 
accommodated to the projection direction [ ]T011 −=µ

r  (see, 
for example, [7-9]). The accommodation is performed by 
mapping Pint  into a new according to the following 
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for each i=1,2,...,n and j=1,2,...,n. Now, the new inner 
computation space is 

}1,1|)1,,{(int njninijiP ≤≤≤≤+−=  ,           (8) 

and the corresponding space of delay elements is 

}1,1|)1,,
2
1{( njninijiPd ≤≤≤≤+−−= .         (9) 

Now, according to (7), (8) and (9), we can define the new 
systolic algorithm that is adjusted to direction [ ]T011 −=µ

r  
and equivalent to Algorithm_3. It has the following form 

Algorithm_4 
 for i:=1  to n do 
 for j:=1 to n do  
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where )1,0,(1 ia)a(i,j, ≡ , )1,,0()1,,0( jbnjb ≡+ , )0,,()0,,( jicnjic ≡+ , 
)1,,()1,,( jicnjic ≡+ , for i=1,2,...,n and j=1,2,...,n. 

III. THE ULSA SYNTHESIS 

The ULSA that computes matrix D(1)  according to 
Algorithm_3 is obtained by mapping (Pint, Pd, D) using 
transformation S defined by (4). The (x,y) coordinates of the 
PEs in ULSA are obtained by mapping Pint, defined by (8), 
according to the following equations 
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for each i=1,2,...,n. 
Positions of delay elements in the (x,y) plane are 

determined by mapping set Pd, defined by (9), using 
transformation S defined by (4), i.e. according to 
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for each i=1,2,...,n. 
 
The communication links between the PEs in the ULSA are 

implemented along the propagation vectors 
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where D is defined by (7) and S by  (4). 
The initial (x,y) positions of input data items at the 

beginning of the computation in the ULSA are obtained 
according to 
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for each i=1,2,...,n and j=1,2,..., n. The parameter r is 
determined for each pair (i, j) as greater of the integers from 
the set {0,1} for which the following is valid  

02 ≤+−− rnji . 
The role of parameter r is to minimize the execution time of 
Algorithm_4. An example of ULSA that computes D(1) for the 
case n=3 is depicted in Fig. 1. Denotation introduced in (1) is 
used. 

 
Fig.1. a) Data flow in the ULSA during the computation of 

D(1) for the case n=3. b) Functional property of the PE. 

IV. PERFORMANCE ANALYSIS  

According to (10) it is not difficult to conclude that 
obtained ULSA has n=Ω  PEs, which is optimal number for 
a given problem size. Assume that time needed to perform an 
operation of type finding a minimum and maximum of two 
values (min and max) represents one time unit. Denote with tin 
initialization time, texe execution time, tout output time, and ttot 
the total execution time of Algorithm_4 on the ULSA. 
According to (13)  we   have that tin=2n-2,  texe = n and 
tout=2n-2. Since ttot = tin + texe + tout we have that ttot=5n-4. 
Recall that we have designed ULSA that implements 
Algorithm_4, i.e. computes ).( )1()1(

ijdD =   Matrix D(n) is 

obtained by computing )()1()2()1( ,,...,, nn DDDD − , such that 
elements )( )()( k

ij
k dD =  are used as inputs for computing 

)( )1()1( ++ = k
ij

k dD , for k=0,1,...,n-1. During the computation 
the output time of k-th iteration is overlapped with the input 
time of (k+1)-st iteration. This is illustrated in Table I for the 
case n=3. Having this in mind, the total time required to 
compute matrix D(n), on the ULSA is )23( −= nnTtot . The 

efficiency of the ULSA is 5.033.0,
23

≤≤
−

= E
n

nE , which is 

considered as good efficiency. 
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TABLE I 
STEP BY STEP TIMMING DIAGRAM  

clk d PE1 d PE2 d PE3 
0 )0(

11d       

1 )0(
13d  }},0max{,0min{:0 )0(

11d=      

2 )0(
12d  }},0max{,0min{:0 )0(

13d=  )0(
11d     

3 )0(
11d  }},max{,0min{:0 )0(

12
)0(

21 dd=  )0(
13d  }},0max{,0min{:0 )0(

11d=    

4 )0(
13d  }},max{,0min{:0 )0(

11
)0(

31 dd=  )0(
12d  }},max{,0min{:0 )0(

13
)0(

21 dd=  )0(
11d   

5 )0(
12d  }},max{,min{: )0(

13
)0(

11
)0(

13
)1(

13 dddd =  )0(
11d  }},max{,min{: )0(

12
)0(

31
)0(

32
)1(

32 dddd =  )0(
13d  }},max{,min{: )0(

11
)0(

21
)0(

21
)1(

21 dddd =  

6 )0(
11d  }},max{,min{: )0(

12
)0(

21
)0(

22
)1(

22 dddd =  )0(
13d  }},max{,min{: )0(

11
)0(

11
)0(

11
)1(

11 dddd =  )0(
12d  }},max{,min{: )0(

13
)0(

31
)0(

33
)1(

33 dddd =  

7 )1(
11d  }},max{,min{: )0(

11
)0(

31
)0(

31
)1(

31 dddd =  )0(
12d  }},max{,min{: )0(

13
)0(

21
)0(

23
)1(

23 dddd =  )0(
11d  }},max{,min{: )0(

12
)0(

11
)0(

12
)1(

12 dddd =  

8 )1(
13d  }},0max{,0min{:0 )1(

11d=  )0(
11d  }},max{,0min{:0 )0(

12
)0(

31 dd=  )0(
13d  }},max{,0min{:0 )0(

11
)0(

21 dd=  

9 )1(
12d  }},0max{,0min{:0 )1(

13d=  )1(
11d  }},0max{,0min{:0 )0(

11d=  )0(
12d  }},max{,0min{:0 )0(

13
)0(

31 dd=  

10 )1(
11d  }},max{,0min{:0 )1(

12
)1(

21 dd=  )1(
13d  }},0max{,0min{:0 )1(

11d=  )0(
11d  }},0max{,0min{:0 )0(

12d=  

11 )1(
13d  }},max{,0min{:0 )1(

11
)1(

31 dd=  )1(
12d  }},max{,0min{:0 )1(

13
)1(

21 dd=  )1(
11d  }},0max{,0min{:0 )0(

11d=  

12 )2(
12d  }},max{,min{: )1(

13
)1(

11
)1(

13
)2(

13 dddd =  )1(
11d  }},max{,min{: )1(

12
)1(

31
)1(

32
)2(

32 dddd =  )1(
13d  }},max{,min{: )1(

11
)1(

21
)1(

21
)2(

21 dddd =  

13 )1(
11d  }},max{,min{: )1(

12
)1(

21
)1(

22
)2(

22 dddd =  )1(
13d  }},max{,min{: )1(

11
)1(

11
)1(

11
)2(

11 dddd =  )1(
12d  }},max{,min{: )1(

13
)1(

31
)1(

33
)2(

33 dddd =  

14 )2(
11d  }},max{,min{: )1(

11
)1(

31
)1(

31
)2(

31 dddd =  )1(
12d  }},max{,min{: )1(

13
)1(

21
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23
)2(

23 dddd =  )1(
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)2(
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)3(
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)2(

31
)2(
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)3(

32 dddd =  )2(
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)2(
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)2(

21
)3(

21 dddd =  

20 )2(
11d  }},max{,min{: )2(

12
)2(

21
)2(

22
)3(

22 dddd =  )2(
13d  }},max{,min{: )2(

11
)2(
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)2(
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)3(

11 dddd =  )2(
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)2(

31
)2(
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)3(
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11

)2(
31

)2(
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23
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11
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12

)3(
12 dddd =  

22       
 

V. CONCLUSION 

A problem of finding MCST of a given graph was 
considered. The problem is partitioned into two parts. First, 
we  compute a wighted matrix, D(n),  according to weighted 
matrix, D(0), of a given graph. Second, MCST is determined 
by comparing matrices D(n) and D(0). To solve the first 
problem we designed unidirectional linear systolic array 
with optimal number of PEs and minimize the execution 
time. The efficiency of the designed array is in the range 
[0.33, 0.5]. Second task is performed by the host computer. 
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