

437

Computing Minimum Cost Spanning Tree on Linear
Unidirectional Systolic Array

E. I. Milovanović1, I. Ž. Milovanović2, B. M. Randjelović3

Abstract –A problem of finding MCST of a given graph is
considered. The problem is partitioned into two parts. First, we
compute a wighted matrix, D(n), according to weighted matrix,
D(0), of a given graph. Second, MCST is determined by
comparing matrices D(n) and D(0). To solve the first problem we
designed unidirectional linear systolic array with optimal
number of PEs and minimize the execution time. The secdond is
performed by the host computer.

Keywords – Systolic array, Minimum cost spanning tree.

I. INTRODUCTION

The minimum cost spanning tree (MCST) of a graph
defines the cheapest subset of edges that keeps the graph in
one connected component. The MCST problem arises in a
number of applications, both as a stand-alone problem and as
a sub problem in more complex problem settings. It is perhaps
the simplest, and certainly one of the most central, models in
the field of network optimisation.

The problem of finding MCST can be formulated as
follows. Consider a connected undirected or directed graph,
G=(V,E), where V={1,2,...,n} is the set of vertices and E is
the set of edges. Associated with each edge (i,j) in E is a cost

ijd . Thus, weighted matrix)()0()0(
ijdD = of order nxn which

corresponds to graf G can be described as

⎪
⎩

⎪
⎨

⎧

=
∉∞+
∈

=
jiif

Ejiif
Ejiifd

d
ij

ij

,0
},{,
},{,

)0(,

 for each ni ,,2,1 K= and nj ,,2,1 K= . The problem is to
find a rooted spanning tree, G=(V,E’) where E’ is a subset of
E such that the sum of ijd for all (i,j) in E’ is minimized. The
spanning tree is defined as a graph which connects, without
any cycle, all nodes with n-1 arcs, i.e., each node, except the
root, has one and only one incoming arc. Note that a minimum
cost spanning tree is not necessarily unique. This problem can
be solved by many different algorithms. The first algorithm
for finding MST was developed by Czech scientist Otakar
Boruvka in 1926 [1-2]. Now, there are two algorithms
commonly used, Prim’s algorithm and Kruskal’s algorithm
[3], [4]. In this paper we will use an algorithm equivalent
to Warshall’s [5] and Floyd’s algorithms [6] for computing
transitive closure and shortest path in a given graph.

 1E. I. Milovanović, 2I. Ž. Milovanović, 3B. M. Randjelović

 are with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Nis, Serbia and Montenegro
E-mail: ema@elfak.ni.ac.yu, igor@elfak.ni.ac.yu,
bane@elfak.ni.ac.yu

In order to find MCST we start from the matrix)()0()0(
ijdD =

and compute a series of matrices nkdD k
ij

k ,,2,1),()()(K== ,
according to the following algorithm:

 Algorithm_1
for k:=1 to n do

for i:=1 to n do
for j:=1 to n do

}},max{,min{:)1()1()1()(−−−= k
kj

k
ik

k
ij

k
ij dddd

In the second step matrix)0(D is compared with matrix
)(nD . An edge (i,j), Eji ∈),(, is added to MCST if and only

if)0()(
ij

n
ij dd = for ni ,,2,1 K= and nj ,,2,1 K= .

In this paper we are interested in finding matrix)(nD , only.
The comparison and computation of the cost is left for the
host computer. In order to compute)(nD we use
unidirectional linear systolic array (ULSA). Because of the
problem dimension and data dependencies in the
corresponding data dependency graph, Algorithm_1 is not
suitable for direct synthesis of ULSA. To overcome this
problem we partition the computations in Algorithm_1 into
appropriate number of two-dimensional entities which are
then computed on the ULSA The final result is obtained by
repeating the computation n times on the designed ULSA.
We require that designed ULSA is space-optimal with respect
to a problem size and the execution time should be as minimal
as possible for a given size of ULSA.

II. THE SYSTOLIC ALGORITHM

In order to obtain two-dimensional entities suitable for the
synthesis of ULSA with desired properties, it is obvious that
one of index variables in Algorithm_1 should be fixed on
some constant value. The computation in Algorithm_1 does
not depend on whether it is performed first on index variable i
or j. In other words the loops on index variables i and j can be
permuted. Therefore, without lost of generality, assume that
index variable i is outer and fixed to some constant value.
Two-dimensional entities obtained by setting i to some
constant value in Algorithm_1 are nidM k

iji ,...,2,1),()(== .

The dependencies between different niM i ,...,2,1, = are very
complex. Namely, it is not possible to compute iM only
according to 10, −≤≤ itM t . Therefore, the computation of
different iM is not suitable for systolic implementation. The
same conclusion would be obtained if j is fixed. Therefore,
only index variable k has left. Let us note that index variable k
is an iterative one in Algorithm_1. The computations in SA

438

are usually performed such that resulting elements are
pipelined through the array unless SA with fixed number of
PEs is concerned or the array where resulting elements are
accumulated in PEs. We do not use neither of the approaches
in this paper. Instead, we partition the computations in
Algorithm_1 into two-dimensional entities)()()(k

ij
k dD = , for

some fixed k=1,2,...,n. The computation of)(kD depends only
on)1(−kD . This means that the computations of)1(D ,...,)(nD
can be performed successively, which is very important for
our approach. It is enough to synthesize ULSA that computes

)1(D and then use it to compute)(nD by repeating the
computations n times.

To ease the presentation we use the following denotation
)1()0()0()0(

1)1,,(,)0,(,)1,,0(,)1,0,(ijijiji djicdjicdjbdia ==== (1)

for i=1,2,...,n and j=1,2,...,n. The corresponding systolic
algorithm has the following form

Algorithm_2
 for i:=1 to n do
 for j:=1 to n do

)}}1,,(),1,,(max{),0,,(min{:)1,,(
)1,,1(:)1,,(
)1,1,(:)1,,(

jibjiajicjic
jibjib

jiajia

=
−=

−=

The inner computation space of Algorithm_2 is
}1,1|)1,,{(int njnijiP ≤≤≤≤= (2)

and the corresponding dependency matrix is

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

100
010
001

333
cab eeeD
rrr

 (3)

Different linear SAs can be obtained by mapping (D, Pint)
along different projection direction vectors. Namely, each
projection direction vector is associated with the
corresponding space-time transformation matrix T which
maps a computational structure of the algorithm (D, Pint) into
a systolic implementation. Matrix T is of the form [9]:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡Π
=

333231

232221

131211

ttt
ttt
ttt

S
T

r

where Π
r

 determines time scheduling, while S is space
transformation which maps (D, Pint) into 1D systolic array.
ULSA can be obtained for the direction projection vector

[]T011 −=µ
r (see, for example [7-8]). However, this

direction is not a permissible one for the Algorithm_2.
Namely, if from the set of possible transformation matrices
for this direction the following one

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡Π
=

100
011
112

S
T

r

 (4)

is chosen arbitrarily, then according to mapping ∆→DS : ,
i.e. according to

[] ⎥
⎦

⎤
⎢
⎣

⎡
==⋅=∆

100
011222

cab eeeDS
rrr

 (5)

which represents the direction of data flow in the systolic
array, we conclude that []Tab ee 0122 ==

rr
meaning that

elements of vectors b
r

and a
r

 propagate through the array in
the same direction. This will cause that the same partial
product is computed in all PEs, leading to incorrect
computation. One way to solve this problem is to introduce
the delay elements between neighbouring PEs. This will result
in different data speed of b

r
and a

r
elements through the array.

If we put delay elements on b
r

path, then 2
be
r will be half of

the 2
ae
r i.e. 22

2
1

ab ee
rr

= . From the algorithmic point of view,

we need to introduce additional index space,

}1,1|)1,,
2
1{(njnijiPd ≤≤≤≤−= (6)

and new dependency matrix

[]
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==
100
010

00
2
1

333
cab eeeD
rrr (7)

Let us note that in index points of space Pd no computation is
performed. Elements of vector b

r
are just copied (i.e. delayed

for one cycle). Now, according to (2), (6) and (7) we construct
a new systolic algorithm, equivalent to Algorithm_2 which
computes D(1), for which the direction []T011 −=µ

r is a
permissible one. The algorithm has the following form

Algorithm_3
 for i:=1 to n do
 for j:=1 to n do

)}}1,,(),1,,(max{),0,,(min{:)1,,(
)1,1,(:)1,,(

)1,,
2
1(:)1,,(

)1,,1(:)1,,
2
1(

jibjiajicjic
jiajia

jibjib

jibjib

=
−=

−=

−=−

The ULSA obtained according to Algorithm_3 computes D(1)
correctly, but according to Pint, defined by (2) and space
transformation S, defined by (4), it has 12 −=Ω n PEs which
is too large for a given problem size. Space-optimal ULSA
should have n PEs. In order to obtain ULSA with optimal
number of PEs, the inner computation space Pint has to be
accommodated to the projection direction []T011 −=µ

r (see,
for example, [7-9]). The accommodation is performed by
mapping Pint into a new according to the following

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

10

0

1100
011
001

1
nij

i
nj

i
V
U

439

for each i=1,2,...,n and j=1,2,...,n. Now, the new inner
computation space is

}1,1|)1,,{(int njninijiP ≤≤≤≤+−= , (8)

and the corresponding space of delay elements is

}1,1|)1,,
2
1{(njninijiPd ≤≤≤≤+−−= . (9)

Now, according to (7), (8) and (9), we can define the new
systolic algorithm that is adjusted to direction []T011 −=µ

r
and equivalent to Algorithm_3. It has the following form

Algorithm_4
 for i:=1 to n do
 for j:=1 to n do

)}}1,,(),1,,(max{),0,,(min{:)1,,(
)1,1,(:)1,,(

)1,,
2
1(:)1,,(

)1,,1(:)1,,
2
1(

nijibnijianijicnijic
nijianijia

nijibnijib

nijibnijib

+−+−+−=+−
−+−=+−

+−−=+−

+−−=+−−

where)1,0,(1 ia)a(i,j, ≡ ,)1,,0()1,,0(jbnjb ≡+ ,)0,,()0,,(jicnjic ≡+ ,
)1,,()1,,(jicnjic ≡+ , for i=1,2,...,n and j=1,2,...,n.

III. THE ULSA SYNTHESIS

The ULSA that computes matrix D(1) according to
Algorithm_3 is obtained by mapping (Pint, Pd, D) using
transformation S defined by (4). The (x,y) coordinates of the
PEs in ULSA are obtained by mapping Pint, defined by (8),
according to the following equations

⎥
⎦

⎤
⎢
⎣

⎡ +
=⎥

⎦

⎤
⎢
⎣

⎡
→

1
nj

y
x

PE (10)

for each i=1,2,...,n.
Positions of delay elements in the (x,y) plane are

determined by mapping set Pd, defined by (9), using
transformation S defined by (4), i.e. according to

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ −+=⎥
⎦

⎤
⎢
⎣

⎡
→

1
2
1nj

y
x

Pd (11)

for each i=1,2,...,n.

The communication links between the PEs in the ULSA are

implemented along the propagation vectors

[]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
==⋅=∆

100

01
2
1

222
cab eeeDS
rrr

, (12)

where D is defined by (7) and S by (4).
The initial (x,y) positions of input data items at the

beginning of the computation in the ULSA are obtained
according to

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−−

+
=⎥

⎦

⎤
⎢
⎣

⎡
→+−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ++−
=⎥

⎦

⎤
⎢
⎣

⎡
→+−

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡ −+
=⎥

⎦

⎤
⎢
⎣

⎡
→

1
0

2
)0,,(

0
2
1

1
2

12
)1,,0(

0
1

1
1

)01,(

rn
ji

nj
y
x

nijic

rn
nij

y
x

nijb

rn
in

y
x

ia

, (13)

for each i=1,2,...,n and j=1,2,..., n. The parameter r is
determined for each pair (i, j) as greater of the integers from
the set {0,1} for which the following is valid

02 ≤+−− rnji .
The role of parameter r is to minimize the execution time of
Algorithm_4. An example of ULSA that computes D(1) for the
case n=3 is depicted in Fig. 1. Denotation introduced in (1) is
used.

Fig.1. a) Data flow in the ULSA during the computation of

D(1) for the case n=3. b) Functional property of the PE.

IV. PERFORMANCE ANALYSIS

According to (10) it is not difficult to conclude that
obtained ULSA has n=Ω PEs, which is optimal number for
a given problem size. Assume that time needed to perform an
operation of type finding a minimum and maximum of two
values (min and max) represents one time unit. Denote with tin
initialization time, texe execution time, tout output time, and ttot
the total execution time of Algorithm_4 on the ULSA.
According to (13) we have that tin=2n-2, texe = n and
tout=2n-2. Since ttot = tin + texe + tout we have that ttot=5n-4.
Recall that we have designed ULSA that implements
Algorithm_4, i.e. computes).()1()1(

ijdD = Matrix D(n) is

obtained by computing)()1()2()1(,,...,, nn DDDD − , such that
elements)()()(k

ij
k dD = are used as inputs for computing

)()1()1(++ = k
ij

k dD , for k=0,1,...,n-1. During the computation
the output time of k-th iteration is overlapped with the input
time of (k+1)-st iteration. This is illustrated in Table I for the
case n=3. Having this in mind, the total time required to
compute matrix D(n), on the ULSA is)23(−= nnTtot . The

efficiency of the ULSA is 5.033.0,
23

≤≤
−

= E
n

nE , which is

considered as good efficiency.

440

TABLE I
STEP BY STEP TIMMING DIAGRAM

clk d PE1 d PE2 d PE3
0)0(

11d

1)0(
13d }},0max{,0min{:0)0(

11d=

2)0(
12d }},0max{,0min{:0)0(

13d=)0(
11d

3)0(
11d }},max{,0min{:0)0(

12
)0(

21 dd=)0(
13d }},0max{,0min{:0)0(

11d=

4)0(
13d }},max{,0min{:0)0(

11
)0(

31 dd=)0(
12d }},max{,0min{:0)0(

13
)0(

21 dd=)0(
11d

5)0(
12d }},max{,min{:)0(

13
)0(

11
)0(

13
)1(

13 dddd =)0(
11d }},max{,min{:)0(

12
)0(

31
)0(

32
)1(

32 dddd =)0(
13d }},max{,min{:)0(

11
)0(

21
)0(

21
)1(

21 dddd =

6)0(
11d }},max{,min{:)0(

12
)0(

21
)0(

22
)1(

22 dddd =)0(
13d }},max{,min{:)0(

11
)0(

11
)0(

11
)1(

11 dddd =)0(
12d }},max{,min{:)0(

13
)0(

31
)0(

33
)1(

33 dddd =

7)1(
11d }},max{,min{:)0(

11
)0(

31
)0(

31
)1(

31 dddd =)0(
12d }},max{,min{:)0(

13
)0(

21
)0(

23
)1(

23 dddd =)0(
11d }},max{,min{:)0(

12
)0(

11
)0(

12
)1(

12 dddd =

8)1(
13d }},0max{,0min{:0)1(

11d=)0(
11d }},max{,0min{:0)0(

12
)0(

31 dd=)0(
13d }},max{,0min{:0)0(

11
)0(

21 dd=

9)1(
12d }},0max{,0min{:0)1(

13d=)1(
11d }},0max{,0min{:0)0(

11d=)0(
12d }},max{,0min{:0)0(

13
)0(

31 dd=

10)1(
11d }},max{,0min{:0)1(

12
)1(

21 dd=)1(
13d }},0max{,0min{:0)1(

11d=)0(
11d }},0max{,0min{:0)0(

12d=

11)1(
13d }},max{,0min{:0)1(

11
)1(

31 dd=)1(
12d }},max{,0min{:0)1(

13
)1(

21 dd=)1(
11d }},0max{,0min{:0)0(

11d=

12)2(
12d }},max{,min{:)1(

13
)1(

11
)1(

13
)2(

13 dddd =)1(
11d }},max{,min{:)1(

12
)1(

31
)1(

32
)2(

32 dddd =)1(
13d }},max{,min{:)1(

11
)1(

21
)1(

21
)2(

21 dddd =

13)1(
11d }},max{,min{:)1(

12
)1(

21
)1(

22
)2(

22 dddd =)1(
13d }},max{,min{:)1(

11
)1(

11
)1(

11
)2(

11 dddd =)1(
12d }},max{,min{:)1(

13
)1(

31
)1(

33
)2(

33 dddd =

14)2(
11d }},max{,min{:)1(

11
)1(

31
)1(

31
)2(

31 dddd =)1(
12d }},max{,min{:)1(

13
)1(

21
)1(

23
)2(

23 dddd =)1(
11d }},max{,min{:)1(

12
)1(

11
)1(

12
)2(

12 dddd =

15)2(
13d }},0max{,0min{:0)2(

11d=)1(
11d }},max{,0min{:0)1(

12
)1(

31 dd=)1(
13d }},max{,0min{:0)1(

11
)1(

21 dd=

16)2(
12d }},0max{,0min{:0)2(

13d=)2(
11d }},0max{,0min{:0)1(

11d=)1(
12d }},max{,0min{:0)1(

13
)1(

31 dd=

17)2(
11d }},max{,0min{:0)2(

12
)2(

21 dd=)2(
13d }},0max{,0min{:0)2(

11d=)1(
11d }},0max{,0min{:0)1(

12d=

18)2(
13d }},max{,0min{:0)2(

11
)2(

31 dd=)2(
12d }},max{,0min{:0)2(

13
)2(

21 dd=)2(
11d }},0max{,0min{:0)1(

11d=

19)2(
12d }},max{,min{:)2(

13
)2(

11
)2(

13
)3(

13 dddd =)2(
11d }},max{,min{:)2(

12
)2(

31
)2(

32
)3(

32 dddd =)2(
13d }},max{,min{:)2(

11
)2(

21
)2(

21
)3(

21 dddd =

20)2(
11d }},max{,min{:)2(

12
)2(

21
)2(

22
)3(

22 dddd =)2(
13d }},max{,min{:)2(

11
)2(

11
)2(

11
)3(

11 dddd =)2(
12d }},max{,min{:)2(

13
)2(

31
)2(

33
)3(

33 dddd =

21 }},max{,min{:)2(
11

)2(
31

)2(
31

)3(
31 dddd =)2(

12d }},max{,min{:)2(
13

)2(
21

)2(
23

)3(
23 dddd =)2(

11d }},max{,min{:)2(
12

)2(
11

)2(
12

)3(
12 dddd =

22

V. CONCLUSION

A problem of finding MCST of a given graph was
considered. The problem is partitioned into two parts. First,
we compute a wighted matrix, D(n), according to weighted
matrix, D(0), of a given graph. Second, MCST is determined
by comparing matrices D(n) and D(0). To solve the first
problem we designed unidirectional linear systolic array
with optimal number of PEs and minimize the execution
time. The efficiency of the designed array is in the range
[0.33, 0.5]. Second task is performed by the host computer.

REFERENCES
[1] O. Boruvka, “About a certain minimal problem”, Prace

Mor.Prirodoved.Spol.v Brne, vol. III, no. 3, pp. 37-58, 1926.
[2] J. Nešetril,“ A few remarks on the history of MST-problem”,

Archivum Mathematicum (Brno), 33, pp. 15-22, 1997.
[3] R. C. Prim, “The shortest connecting network and some

generalisations”, Bell Syst. Tech. J., no.36, pp. 1389-1401,
1957.

[4] J. B. Kruskal, “ On the shortest spanning subtree of a graph
and the travelling salesman problem”, Proc. Amer. Math.
Soc., no 7, pp. 48-50, 1956.

[5] S. Warshall. “A theorem on Boolean matrices”, J. ACM, no.
9, pp. 11-12, 1962.

[6] R. W. Floyd,”Algorithm 97, Shortest path”, C. ACM, no. 5,
pp. 5, 1962.

[7] E. I. Milovanović, I. Ž. Milovanović, B. M. Randjelović, M.
K. Stojčev, “Systolic implementation of nonlinear
transformation of two sequences”, TELSIKS '03 Conference
Proceedings, pp.592-595, Nis, Serbia & Montenegro, 2003.

[8] E. I. Milovanović, M. P. Bekakos, Ć. Dolićanin, I. Ž.
Milovanović, “Computing transitive closure on
unidirectional linear systolic array, J. Electrotehn. Math.,
vol. 9, no 1, pp.19-28, 2004.

[9] M. Bekakos, E. Milovanović, N. Stojanović, T. Tokić, I.
Milovanović, I. Milentijević, “Transformation matrices for
systolic array synthesis”, J. Electrotehn. Math., vol. 7, no 1,
pp.9-15, 2002.

