

445

Language Support for
Parallel Discrete Event Simulation

Hristo Valchanov1, Nadezhda Ruskova2, Trifon Ruskov3

Abstract – Parallel discrete-event simulation (PDES) requires
in-depth knowledge of the mapping process from the physical
model to the simulation model and underlying synchronization
protocols in use. Languages for PDES could significantly reduce
the development effort by providing the user with a set of well-
defined language constructs for designing simulation models. In
this paper we present an object-oriented language for PDES,
called SIMOPAL. Basic features of the language and its
distributed implementation are discussed.

Keywords – Simulation languages, Distributed Simulation,
PDES.

I. INTRODUCTION

For the past few years Parallel Discrete Event Simulation
(PDES) has been regarded as a broad field for scientific
research. The interest for it has been dictated by the need for
increasing the processing speed in the complex systems
analysis. The main reasons thereof are two: the use of parallel
processors presumes simulation speed increase, on the one
hand, and the large memory space of the parallel processors
allows for realization of larger simulation models compared to
the memory of single-processor machines, on the other hand.
Due to the asynchronous nature of events occurrence and the
distributed nature of the model’s components performance,
the main problem with PDES is ensuring of correct events
processing with respect to model time. There are two main
approaches for complying with this requirement: conservative
and optimistic [2]. With both approaches the simulation model
is presented as an aggregate of logical processes, each
modeling a separate physical process of the modeled system.
The logical processes exchange messages for the events
taking place at certain moments of the model time.

The transition from sequential to distributed simulation
needs to be as smooth as possible. The user has to focus his
skills on the modeling process, free of the necessity to know
the used synchronization protocols or their influence. This is
what the main goal in the design and development of
frameworks for PDES is.

 A typical feature of these frameworks is the presentation of
the PDES means – in the form of simulation language or as a
library. The motivation for the development of languages for

 1Hristo Valchanov is with the Computer Science Department,
Technical University, 9010, Studentska Str., Varna, Bulgaria,
E-mail: hristo@tu-varna.acad.bg
2Nadezhda Ruskova is with the Computer Science Department,
Technical University, 9010, Studentska Str., Varna, Bulgaria,
E-mail: ruskova@tu-varna.acad.bg
3Trifon Ruskov is with the Computer Science Department, Technical
University, 9010, Studentska Str., Varna, Bulgaria,
E-mail: ruskov@tu-varna.acad.bg

PDES instead of function libraries is in the fact that the users
do not have to be familiar with the used synchronization
protocols or the peculiarities of the runtime environment.

II. RELATED WORK

There are a number of requirements to the PDES languages
as regards the model of: presentation of the modeled system;
the framework; the synchronization protocols and the runtime
environment.

The simulation languages require that the user models the
physical environment in a certain way. In the terminology of
PDES, the program interface by which the user can describe
the modeled environment is known as ‘world view’. In the
PDES languages two main concepts for the ‘world view’ are
used: event scheduling and process interaction.

Under the approach of event scheduling, the development
of the model is described as a sequence of events ordered by
their time of occurrence. A procedure corresponds to each
event. The occurrence of the event is interpreted by executing
of the corresponding procedure and has influence on certain
variables of the model state. Typical representatives of this
approach are the systems for PDES SPEEDS [3], TWOS [4]
and WARPED [5].

The second approach considers the modeled system as an
aggregate of parallel interacting processes. The actual
components of the modeled system may share the same
characteristics which allows for them to be combined in a
class. The behavior of each class of components is described
by a class process. The interaction between the processes is
carried out by an exchange of messages interpreting the
occurrence of certain events. Representatives of this approach
are the simulation languages of the type of APOSTLE,
ParSec, ModSim and YADEES [6].

The PDES languages can provide to the user both the
traditional structural programming approach and the object-
oriented approach. The advantage of structural programming
is the simplified realization of the runtime system and the
better time-saving characteristics of the model
implementation. However, the object-oriented languages
allow for the time of applications development to be
significantly reduced and an easier modification and a reusing
of the program code to be achieved. APOSTLE and ModSim
provide to the users an object-oriented environment for
development of their applications, whereas Parsec is a
representative of the structural languages for PDES, being a
language extension of C. YADDES, on its part, is a
descriptive language of the type of Lex and Yacc, providing a
minimum set of language structures.

The researches in the filed of PDES for the last 15 years
have resulted in the development of a series of

446

synchronization protocols [1]. Yet no adequate solutions are
known allowing the user to choose the appropriate
synchronization protocol. The simulation model can very
often derive much better efficiency from a synchronization
protocol, but with productivity dramatically reduced when
using another one. Some of the simulation languages
presented are based on the conservative approach while others
use optimistic synchronization methods.

The PDES systems developed in the recent years are largely
architecturally dependent, which is influenced by their use by
a limited area of researches of the scientific community. For
instance, APOSTLE has been developed for the Meico CS-2
multiprocessor system. WARPED has been developed for
Intel Paragon and a network of Sun Sparc workstations.
Parsec has been developed for IBM SP and for a network of
Sun Sparc workstations. The spread of local area computer
networks (LAN) provides new possibilities for organizing of
large computing resources for acceleration of the simulation
process as well as for its popularization. LAN are of low cost
and provide a possibility for easy reconfiguration unlike the
multiprocessor systems with shared memory traditionally used
for the purposes of PDES. At the same time LAN use the
widely spread hardware and software which makes them
accessible to a wide area of users. The distribution LAN based
systems allow for effective use of the available unloaded
processors and for an increase of the number of computers in
the network, creating conditions for the implementation of
simulation models with sufficiently high degree of
parallelism.

The article present the typical features of an object-oriented
language for PDES – SIMOPAL, providing a possibility for
organizing shared memory on distributed memory systems, at
the same time ensuring transparency as regards
synchronization protocols. Its potential for describing of
complex systems as well as its realization has been
demonstrated.

III. THE LANGUAGE SIMOPAL

In the model of SIMOPAL (SIMulation Object-oriented
Paralel Language) the modeled system is presented in the
form of object-oriented parallel system, considered as an
aggregate of objects and messages. The object is an abstract
description of an independent processing element, possessing
local memory. The only admissible interaction between the
objects is the asynchronous exchange of messages. These
typical features of the model fully satisfy the requirements of
PDES to the modeling languages in terms of: maximum
performance parallelization; adequacy of describing the
modeled system taking account of its inherent parallelism; a
possibility for applying the object-oriented approach in view
of reducing the process of models description; convenient and
effective model implementation on various parallel
architectures.

SIMOPAL language is based on the concept of ‘world
view’ by means of interacting processes, with elements of the
other events processing approach added. The modeled system
is described as an aggregate of class instances. A class
instance simulates a specific physical process of the modeled

system. In the ideal case, each process is executed
independently of the rest, on a separate processor in the
distributed runtime environment. The executing of each
instance (process) is determined depending on the occurrence
of specific events. The occurrence of an event may result in
one of the following three actions: change in the attributes of a
process; scheduling of a new event in the simulation model;
creation of a class instance.

SIMOPAL program is an aggregate of class declarations
and an initiating section. The declarations are used for
structural description of the components and features of the
modeled program. The initiating section is used for initial
establishment and starting of the simulation and is implicitly
interpreted by the runtime system as a virtual initial process.

III.1. CLASSES

A class declaration specifies a pattern of the structure
(attributes) and behavior (rules on event processing) of its
instances (objects). The class instances are created
dynamically during the process of simulation and are
interpreted by the runtime system as active components
(processes). The values of the attributes of each instance
reflect its current state while the aggregate of values of the
attributes of all instances determines the current state of the
entire modeled system. Each attribute may be of a specific
type. Due to the experimental nature of the language, only
simple data types are supported: integers (int), reals (real),
boolean data (bool), symbol data (char), strings, object
identifiers (oid) as well as a structured type – array.

The class declaration includes a declaration of events, too.
The events are the main component of the PDES model,
reflecting the change in the state of the modeled system. The
events are interpreted by the runtime system as exchange of
messages between the class instances (processes). A
simulation time (timestamp) simulating the moment of
occurrence is associated with each event. An event may
contain typified parameters. It allows implementation of an
information exchange between the class instances by means of
the mechanism of events scheduling in the simulation model
and their handling by the processes. The events declared
within a class have a local scope of visibility and are only
accessible by the objects in this class. If any processing of
events between objects of various classes is necessary, then
these common events should be declared in a common basic
inheritable class.

The execution of the simulation model (change in the
current state of the simulation system) is the result of the
occurrence of a certain series of events during the model time.
The simulation process requires that these events are
processed by the active components – the class instances
(processes). The class declaration includes a pattern of the
behavior of the class instances, too, specified by means of
behavior rules. Each rule is defined by an isevent statement
and refers to a single event of specific type. The algorithm of
a process functioning comprises a sequential checking for
received message of scheduled event by the order of rules
defining. In case of coincidence, that is, when the respective
rule is satisfied, the process performs the actions described.

447

Fig. 1 shows a program fragment of Router class declaring
with two attributes of the int. type. The objects of this class
may communicate with one another by means of two types of
events, performing certain actions depending on the specific
event received.

Fig.1. Declaration of Router class

During event processing, additional conditional behavior
may be introduced by assigning a guard in the isevent
statement. An event rule e with a guard b is satisfied if the
process has received a message of event e occurrence and the
result of guard b calculation is true. Fig. 2 shows an example
of using a guard.

Fig.2. Using a guard

III.2. EVENT SCHEDULING

The objects behavior and hence the executing of the
simulation model are determined by the occurrence of certain
events. The events in SIMOPAL are explicitly scheduled by
the instances in the simulation environment by means of
deposit statement. Such explicit scheduling provides a
possibility for the user to describe the functioning of the real
modeled system more adequately.

By default, each new event is scheduled with a timestamp
equal to the current value of the local simulation time of the
process. SIMOPAL provides a possibility for the events
occurrence time control by inputting a offset against the
current local time of the process. Fig. 3 shows the scheduling
of a Resume event to a process with next_router identifier
which is to occur after 100 units of simulation time.

Fig.3. Event scheduling

SIMOPAL provides a possibility for special scheduling of
events (Fig. 4):

 object to itself – the keyword self is specified as first
argument. This allows for simulation of timeout events
or for generators of events;

 to all objects in the simulation system – the value of nil
is specified as first argument. Simulation of broadcast
exchange is allowed;

 to a group of objects in the simulation system – a
composition of objects identifiers is specified as first
argument by means of + operator. If a class identifier or
a composition of class identifiers is specified, depositing
of the event will concern all objects of this class or
composition of classes.

Fig.4. Special scheduling of events

Depositing of events to multiple objects is one of the

features of SIMOPAL which has not been realized in any of
the above-mentioned simulation languages.

III.3. CLASS INHERITANCE

SIMOPAL ensures multiple class-to-class inheritance. The
current class inherits the immediate superclasses of a list. The
inheriting allows setting up of class hierarchy. An object of a
given class inherits both the structure (attributes) and the
behavior (rules) of its superclasses.

Fig. 5 shows an example of relations between three classes.
Class C is subclass of classes A and B. When inheriting, all

attributes (Attr), rules (Rules) and declarations of events (not
shown on the diagram) of its superclasses A and B are added
without changes. Any new properties of class C object may be
additionally specified in the C declaration. If classes A and B
on their part are a subclass of other superclasses, the above
inheritance principle will be valid for them, too.

One of the main applications of inheritance is the expansion
of the visibility scope of the identifiers in a SIMOPAL
program. By default, only the class identifiers are global,
while all declarations within their bodies are local. Due to the
absence of global data in the distributed simulation model,
objects of different classes may exchange information only by
means of the events mechanism. The declarations of used
events may be set apart in a superclass which on its part is to
be inherited by the above-mentioned classes.

typeclass Router () {
 int hops;
 int length;

 event Update { int hop };
 event Resume { };

 isevent (Update u) {
 length = length + u.hop;
 ...
 };
 isevent (Resume r) {
 ...
 };
};

 isevent (Update u) when (length > 0) {
 length = length + u.hop;
 ...
 };

 deposit (next_router, Resume, 100);

(* Timeout event to self after 100 time units *)
 deposit (self, Timeout, 100);

(* Event Transfer to all processes immediately *)
 deposit (nil, Transfer);

(* Event Route to all objects of class *)
(* OSPF_router and BGP_router *)
 deposit (OSPF_router + BGP_router, Route);

448

Fig.5. A class inheritance hierarchy

IV. IMPLEMENTATION OF THE LANGUAGE

The distributed runtime system of SIMOPAL language has
been realized on a network of workstations, each functioning
under the control of OS Linux. Its structure is of cluster
organization, with a cluster of logical processes executed by a
separate workstation. Each logical process (LP) interprets the
functioning of a specific instance of a process defined in the
language. The execution of LP in each cluster is controlled by
a local dispatcher. Realization of the logical processes within
a single Linux process reduces switching of the processes
context to a significant extent, which increases the simulation
efficiency. The communication between the individual
clusters is carried out by a communication subsystem with
possibilities for use of both the MPI communication standard
and the SCTP protocol [7].

The distributed runtime system is based on optimistic
synchronization protocol TimeWarp with aggressive and lazy
message cancellation.

V. CONCLUSION

The SIMOPAL language for distributed simulation has the
following characteristics:

 object orientation;
 compact and convenient description of the modeled

system;
 transparency for the user as regards the distributed

nature of modeling allowing for sequential or
distributed simulation of the models without changing
the program code;

 it is oriented to a wide area of conceptual
synchronization models in PDES;

 it is realized on a distributed runtime system with
transparency as regards the load balancing of logical
processes;

 a possibility for logical organization of a shared
memory on a distributed architecture.

In our future work we will focus on the development of

graphic user interface and libraries to help accelerate the
process of creation of program models in specific areas of
application.

REFERENCES

[1] Ferscha A. Parallel and Distributed Simulation of Discrete Event
Simulation. In Handbook of Parallel and Distributed Computing,
Mc-Graw Hill, 1995.

[2] Fujimoto R.M. Parallel Discrete Event Simulation.
Communications of the ACM, vol.33, N10, pp.41-52, 1990.

[3] Steinman J. SPEEDES: A Multiple Synchronization
Environment for Parallel Discrete Event Simulation. Int. Journal
in Computer Simulation, v.2, N3, pp.251-286, 1992.

[4] Rich D.O., Michelsen R.E. “An Assessment of the
ModSim/TWOS Parallel Simulation Environment.” In Proc. of
the 1991 WSC, pp. 509-518, 1991.

[5] Dale E., Wilsey P., Timothy J. WARPED Simulation Kernel
Documentation, 1995.

[6] Low Y., Lim C. Cai W., Huang S., Turner S. Survey of
Languages and Runtime Libraries for Parallel Discrete Event
Simulation. Tech. Report, Simulation, pp.1-15,1999.

[7] H. Valchanov, I. Ruskov, N. Ruskova. A Communication Kernel
of a Cluster System for Distributed Simulation. In Proc. of the
CompSysTech2004, pp.IIIB.19-1 – IIIB19-5 , 2004.

Attr_A
A

Rules_A
Attr_B

B

Rules_B

Attr_A
C

Attr_B
Attr_C

Rules_A

Rules_C

Rules_B

typeclass C () {
 inherit A, B;

 <Attr_C>

 <Rules_C>

};

