

449

DRAM Controller with a Simple Predictor
Vladimir V. Stankovic1, Nebojsa Z. Milenkovic2

Abstract – In the arsenal of resources for computer memory

system performance improvement, predictors have gained an
increasing role in the past years. They enable hiding the latencies
when accessing cache or main memory. In paper [1] it is shown
how temporal parameters of cache memory access, defined as
live time, dead time and access interval could be used for
prediction of data prefetching. In this paper a possibility of
applying an analog technique on controlling DRAM memory
opened rows closing, is being researched. Obtained results
confirm such a possibility, which served us to propose a simple
predictor. Using such a predictor can significantly decrease the
average DRAM latency.

Keywords – DRAM, memory, latency, DRAM controller,
DRAM controller policy, predictor, bank, row.

I. INTRODUCTION

A desire for better potential utilization of processors, which
are becoming faster and faster, demands a memory system
with similar performances. A critical ring in the hierarchically
organized memory system is the main memory, implemented
with chips of dynamic memory (DRAM – Dynamic Random
Access Memory). In order to achieve as large bandwidth as
possible, the chips of contemporary DRAM memories are
organized with several independent memory banks, allow
memory accesses pipelining, and buffer the data from the last
activated row in each bank. Although increasing the memory
bandwidth, these solutions make the contemporary DRAM
memories performances dependable on memory access
patterns. Contemporary DRAM memories are not really
random access memories, characterized with identical access
times to all locations in them. They are actually three-
dimensional memories, with banks, rows, and columns as
dimensions. DRAM data access with row opening demands
the following time:

Ta = Tpr+Tra+Tca (1)

where

- Tpr – is precharge time,
- Tra – is row access time,
- Tca – is column access time.

Using of read and write commands with autoprecharge
eliminates the precharge time when next access occurs,
reducing the access time to Tra+Tca. Data accesses into
already opened rows eliminate the precharge time and row

access time, reducing the access time to Tca. The result is that
consecutive accesses to different rows into single memory
bank have larger latencies than consecutive accesses into the
same row. Performance maximization of DRAM memories
demands minimization of participation of precharges and rows
openings.

This makes that we can influence DRAM memory
performances (latency) by controlling the data placement into
banks and rows. This is the basis of papers in which address
remappings are considered, which transform memory
addresses into banks, rows and columns that optimize DRAM
performances for certain memory access patterns [3, 4].

DRAM memory latency can be decreased if the opened row
is closed just before the next data access directed to the same
bank, but to different row, occurs. In that way the precharge
time Tpr is being hidden, so the latency is practically reduced
to Ta = Tra+Tca. The latency could be additionally reduced to
Ta = Tca, by hiding the row access time. This demands the
next row that is going to be accessed, to be opened in
advance. In-time closing of the opened row demands a
prediction when to close the opened row. Opening in advance
the next row to be accessed demands a prediction which row
to open and when.

Papers [1, 2] deal with possibilities to predict the moment
when the data block in the cache memory is to be declared
'dead' (i.e. unnecessary present in the cache, because it is not
to be used in the near future) and when and which data block
to prefetch to the cache. Those ideas maybe could be applied
to DRAM memories. That inspired us to investigate the
possibilities of applying some of those ideas on DRAM
memory performance optimization. In this paper we have
restrained on ideas from [1], which relate to applying metrics
of characteristic time parameters of data blocks transferred to
cache memory. Analogically, we have defined proper
characteristic time parameters for DRAM memories. By
simulation, we have concluded that DRAM memory accesses
have some regularities that can be used for prediction when to
close the opened row. Based on those results, we have
proposed a predictor, which could be integrated into existent
DRAM memory controllers.

The paper is organized as follows. In section II we consider
the existent DRAM controller policies and the basic idea. In
section III the used simulation model is exposed. Section IV
gives a review of the obtained results, and section V is the
conclusion.

II. WHAT PREDICTION IS BASED ON?

A classic DRAM controller uses two possible policies
(strategies): Open Page (Row) Policy (Optimistic Policy) and
Close Page (Row) Autoprecharge Policy (Pessimistic Policy).
When using the first one, the row is kept opened, which
decreases the latency if the next DRAM access is directed to

1Vladimir V. Stankovic is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Nis, Serbia and
Montenegro, E-mail: svlada@elfak.ni.ac.yu

2Nebojsa Z. Milenkovic is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Nis, Serbia and
Montenegro, E-mail: nmilenko@elfak.ni.ac.yu

450

the same row as the previous, and increases the latency if the
next DRAM access is directed to some other row. In the first
case the latency is equal to Tca, and in the second it is equal to
the sum Tpr+Tra+Tca. When using the second policy, a row is
being closed after every access, so the latency is always the
same – the sum Tra+Tca. The Open Row Policy gives good
results if there is a good memory access locality, and the
Close Row Autoprecharge Policy gives good results if DRAM
accesses have mostly random character. In our previous
papers [4, 5] we have already considered various possibilities
of obtaining hybrid policies, which use the advantages of both
policies. The goal is to achieve a policy more efficient than
both the Open Row and Close Row Autoprecharge Policy,
and in that way, decrease the DRAM latency. In ideal case the
opened row should be kept open for as long as there are
accesses into it, and not to some other row, and it should be
closed after the last access into it. In that way the system
would be prepared for the next row access. In that case the
precharge time could be hidden every time the row is
changed, which would decrease the latency. In this paper we
consider a hybrid policy which strives to predict the moment
when to close the opened row.

Since we want to apply the metrics analogous to those from
[1] in order to improve DRAM memory performances, let us
first define those metrics related to DRAM memory. Live
time is a time interval that elapses from opening the row in a
bank until the last access into that row before its closing. Dead
time is a time which elapses from the last access to open row
until the moment of its closing. Access interval is a time
interval which elapses between two consecutive accesses to
open row in a bank. A live time of an open row is called a
zero live time, if after its opening there are no further accesses
to that row till its closing. If there is at least one access to
already open row before its closing, then that row's live time
is not a zero live time.

An insight of open row entering into dead time is a signal
for the DRAM controller to close that row, and eventually
open some other row in the same bank. It would also be
preferable for the DRAM controller to be able to recognize
(i.e. to predict) opening row with zero live time, since in that
case that row should be immediately closed.

III. SYSTEM SIMULATION MODEL

For simulation we have used the program Sim-Outorder
from the Simplescalar Tool Set [6]. We have integrated this
simulator with programs that simulate DRAM memories,
written by ourselves. The characteristics of the simulated
processor are: a superscalar processor that issues at most 4
instructions on every clock cycle and supports out of order
instruction execution. The processor clock frequency is 2
GHz. As a branch predictor a two-level branch predictor was
used. There are two levels of cache memories. The first one
contains separate instruction and data caches. They are both
16KB large; use direct mapping and have line size of 32B.
The second level contains a unified cache, 1MB large, with
set-associative mapping - associativity of 4, and line size of
128B. All the cache memories use write-back policy.

The simulated DRAM memory has the following
characteristics: there are 4 banks in one chip, 4096 rows in a
bank, the row capacity is 1KB, the precharge time, row access
time, and column access time are 20 processor clock cycles
each, the memory bus has 128 data lines.

We have simulated executions of 6 benchmark programs
from the SPEC95 suite: cc1, compress, ijpeg, li, m88ksim,
and perl. The characteristics of those programs can be found
in our previous papers [4, 5].

IV. RESULTS

As a start, we have measured the following parameters:
open row hit probability, number of zero live times, number
of non zero live times, and average values for access interval,
live time and dead time, measured in processor clock cycles.
The results are shown in Table I. It can be seen that in
benchmark programs with small open row hit probability (cc1,
ijpeg, perl) number of zero live times is much greater than
number of non zero live times, which is reasonable. In
benchmarks with large open row hit probability (compress, li,
m88ksim) there are much more non zero live times than zero
live times. These results recommend to try researching the
possibilities of designing a predictor which, when opening a
row, predicts its live time as zero or nonzero. This will,
probably, be a subject of our future work. If the other
parameters are observed, it can be noticed that in all the cases,
not dependable on the open row hit probability, the average
value of access intervals is much less than the average value
of dead times. This suggests a possibility of defining a simple
predictor. If, from the last access to open row, a certain
amount of time (equal to some boundary value) has elapsed,
then that row should be closed, since it has probably entered
the dead time. If that amount of time has not yet elapsed, the
row is to be kept open. As a boundary, a value that is the same
order of magnitude as the last access interval should be used.
For instance, it could be the last access interval multiplied by
2 or 4.

TABLE I

MEASURED CHARACTERISTICS OF BENCHMARK PROGRAMS

Benchmark cc1 compress ijpeg
Open row hit probability 0.34 0.84 0.31
Zero live times 58662 51 28895
Non zero live times 15811 587 2621
Access interval 65833 2889 28692
Live time 165718 17773 155700
Dead time 1243661 161594 580286

Benchmark li m88ksim perl
Open row hit probability 0.76 0.83 0.07
Zero live times 59 101 1174201
Non zero live times 236 794 44955
Access interval 839903 643307 43078
Live time 3420116 3712389 97176
Dead time 18495793 19202689 135064

451

0

10

20

30

40

50

60

cc1 com ijpeg li m88 perl

OpenRow
Common
Separate
Ideal

Fig. 1. Average latencies in processor clock cycles for rgbc

0
5

10
15
20
25
30
35
40

cc1 com ijpeg li m88 perl

OpenRow
Common
Separate
Ideal

Fig. 2. Average latencies in processor clock cycles for rgrbcx

0
5

10
15
20
25
30
35
40

cc1 com ijpeg li m88 perl

OpenRow
Common
Separate
Ideal

Fig. 3. Average latencies in processor clock cycles for rbrgcx

We have tried 2 variants for boundary levels – the last

access interval multiplied by 2 and 4. The results are
practically the same; i.e. the differences are insignificant. In
this paper we show the results when the boundary value is
equal to the access interval multiplied by 2. In paper [4] we
have considered various address remappings, which increase
the open row hit probability. In order to gain as objective
evaluation as possible, we have tried 3 variants. The first one
is a classical page interleaving scheme, which also can be
named as row-group-bank-column (rgbc) by the sequence of
meaning of the address bits, and the other two are the two
address remappings from the mentioned paper that have
showed as the best: rgrbcx and rbrgcx. For all of the named
combinations we have tried two possible solutions. The first
one uses only one common value of access interval, which is
defined by every appearance of new access interval in any

bank. In the second solution there is one value of access
interval for each bank in the system.

The average DRAM latencies, in processor clock cycles, are
shown in Figs. 1, 2 and 3. These Figs. show average DRAM
latencies when using Open Row Policy (Open Row), policies
with the proposed simple predictor with a common value and
with separate values of access interval (Common and
Separate), and a policy with an ideal predictor, i.e. a predictor
whose prediction accuracy would be 100% (Ideal). It can be
seen that the proposed solutions, although simple, give rather
good improvements. The encouraging thing is that
improvements are obtained not only for the basic rgbc
scheme, but also for the both address remapping schemes.
This means that it is possible to apply the address remappings,
which already give respectable improvements, together with
the considered predictor to additionally increase the
improvements.

If we compare the solutions with a common value and with
separate values of access interval, there are almost no
differences among them. In the solution with a common value
there are access interval interferences from different banks.
That interference is removed when using separate values for
each bank. This interference is not significant in a single
program environment, which was the case of our simulations
(this is why there are practically no differences in the results).
In some cases (li and m88ksim with rgbc and ijpeg with
rgrbcx and rbrgcx) worse results for Separate than Common
could be explained by longer negative influences of extreme,
relative to average, values of access interval. In a
multiprogram environment access intervals of different
programs can differ a lot. In that case the interference
influence in the solution with a common value would
dominate, which would certainly decrease the prediction
accuracy, so this solution would show less performance
improvement. We can conclude this from Table I, which
shows that average access interval values for different
programs can range up to 1 to 290 (for compress and li).

Table II shows the prediction accuracy and coverage when
using one common register for all the banks. The coverage is
the part of accesses for which the predictor made a certain
prediction, starting from the first appearance of access interval
value. The prediction accuracies and coverages when using
separate values for each bank are very similar to these ones,
so we omit them. In Table II cr (close row) is the probability
of the accurate prediction that the row should be closed, and
ncr (not close row) is the probability of the accurate prediction
that the row should be kept open. The proper coverages are
given in the parenthesis. By simple addition of these coverage
percentages it can be concluded that the percentage of the
accesses not involved by the predictor is negligible – in
almost all the cases it is about 1% or less. Only in case of li
using basic page interleaving scheme this percentage is about
5%. These accesses not involved by the predictor comprises
all the first accesses which are zero live times, till the
appearing of the first non zero live time, i.e. the first value for
access interval, which is the moment when the predictor starts
with the prediction process. If we see the prediction
accuracies themselves it can be seen that in 29 of 36 cases
they are more than 70%, and in 19 of 36 cases are more than

452

80%. These are rather good values. The high prediction
accuracies also have high coverages in most of the cases. It
happens, however, the predictions that the row should be kept
open, to be very low, and to have rather high coverages, when
using the basic page interleaving scheme, in the benchmarks
with low open row probabilities (cc1 - 0.43 (63%), ijpeg -
0.34 (80%) and perl - 0.08 (78%)). These cases deserve an
attention to look for improvements – probably the mentioned
predictor which predicts zero live times could give needed
improvements.

TABLE II

PREDICTION ACCURACY AND COVERAGE FOR COMMON

Benchmark cc1 compress ijpeg
cr – rgbc. 0.79 (37%) 0.63 (21%) 0.80 (20%)
ncr – rgbc 0.43 (63%) 0.99 (78%) 0.34 (80%)
cr – rgrbcx. 0.78 (48%) 0.66 (21%) 0.79 (25%)
ncr – rgrbcx 0.85 (52%) 0.97 (79%) 0.96 (75%)
cr – rbrgcx. 0.74 (48%) 0.68 (21%) 0.70 (24%)
ncr – rbrgcx 0.89 (52%) 0.98 (78%) 0.94 (76%)

Benchmark li m88ksim perl
cr – rgbc. 0.60 (27%) 0.78 (18%) 0.95 (22%)
ncr – rgbc 0.96 (68%) 0.99 (80%) 0.08 (78%)
cr – rgrbcx. 0.78 (29%) 0.86 (18%) 0.82 (30%)
ncr – rgrbcx 0.90 (70%) 0.96 (81%) 0.72 (70%)
cr – rbrgcx. 0.73 (31%) 0.82 (19%) 0.82 (32%)
ncr – rbrgcx 0.94 (67%) 0.98 (80%) 0.77 (68%)

Let us now consider how the implementation of the

considered predictor would influence the complexity and price
of the DRAM controller. The controller should have a counter
for each bank (to take care of the elapsed time since the last
access), one common register for all the banks in the system
or separate registers, one for each bank, (for storing the last
access interval value), and one comparator for each bank (for
comparing the access interval register value(s) with the
counters). In order to minimize the length of the counters,
they could be triggered with a signal derived by dividing the
DRAM’s clock. A simple shift operation by 1 or 2 positions
over the access interval register(s) would be needed for
defining the boundary value(s). By comparing this value with
the counters the controller would decide whether to issue a
precharge command or not. The controller that implements the
Open Row Policy has a register for each bank for storing the
last open row index, and comparators for comparing the index
of the row to which the current access occurs with those
registers. Compared to that, we could say that the controller

with the proposed predictor would have similar complexity
and price.

V. CONCLUSION

In this paper we have considered performances of DRAM
memory with a controller that uses a simple predictor which
predicts whether the opened DRAM row should be further
kept open or it should be closed. The considered two solutions
(the first one, with a common register, and the second one,
with separated registers, for access intervals storing) are rather
simple, and give good performance improvements, for all the
three considered variants (the basic page interleaving scheme
and the two address remapping schemes). The implementation
of the considered solutions would be simple and with
acceptable price. It is expected that the considered predictor,
amplified with a predictor that predicts whether the live time
is going to be a zero live time, would give additional
performance improvements. This will be a subject of our
further research. Also, we will focus our attention on
designing a predictor which predicts which is the next row to
be opened, after closing the current row. That kind of solution
would additionally decrease the DRAM memory latency.

REFERENCES

[1] Z. Hu, S. Kaxiras, M. Martonosi, “Timekeeping in the
Memory System: Predicting and Optimizing Memory
Behavior”, The 2003 IEEE International Solid_state
Circuits Conference (ISSCC 2003), February 2003.

[2] A. Lai, C. Fide, B. Falsafi, “Dead-Block Prediction and
Dead-Block Correlating Prefetchers”, Proc. 28th ISCA,
June 2001, pp. 144-154.

[3] Zhang Z., Z. Zhu and X. Zhang “A permutation-based
page interleaving scheme to reduce row-buffer conflicts
and exploit data locality” Proc. 33rd AIS on
Microarchitecture, (Micro-33), Monterey, Calif. 2000.

[4] V. Stankovic, N. Milenkovic, “Access Latency
Reduction in Contemporary DRAM Memories”, Facta
Universitatis, series: Electronics and Energetics, Vol.
17, No. 1, April 2004, pp. 81-97.

[5] V. Stankovic, N. Milenkovic, “Two New DRAM
Controller Policies”, Yu Info 2004, Kopaonik, March
2004.

[6] Burger D and T.M.Austin, “The SimpleScalar Tool Set,
Version 2.0”, University of Wisconsin-Madison
Computer Sciences Department Technical Report
#1342, June 1997.

