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DRAM Controller with a Simple Predictor 
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Abstract – In the arsenal of resources for computer memory 

system performance improvement, predictors have gained an 
increasing role in the past years. They enable hiding the latencies 
when accessing cache or main memory. In paper [1] it is shown 
how temporal parameters of cache memory access, defined as 
live time, dead time and access interval could be used for 
prediction of data prefetching. In this paper a possibility of 
applying an analog technique on controlling DRAM memory 
opened rows closing, is being researched. Obtained results 
confirm such a possibility, which served us to propose a simple 
predictor. Using such a predictor can significantly decrease the 
average DRAM latency. 
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I. INTRODUCTION 

A desire for better potential utilization of processors, which 
are becoming faster and faster, demands a memory system 
with similar performances. A critical ring in the hierarchically 
organized memory system is the main memory, implemented 
with chips of dynamic memory (DRAM – Dynamic Random 
Access Memory). In order to achieve as large bandwidth as 
possible, the chips of contemporary DRAM memories are 
organized with several independent memory banks, allow 
memory accesses pipelining, and buffer the data from the last 
activated row in each bank. Although increasing the memory 
bandwidth, these solutions make the contemporary DRAM 
memories performances dependable on memory access 
patterns. Contemporary DRAM memories are not really 
random access memories, characterized with identical access 
times to all locations in them. They are actually three-
dimensional memories, with banks, rows, and columns as 
dimensions. DRAM data access with row opening demands 
the following time: 
 
Ta = Tpr+Tra+Tca (1) 
 
where 
 
- Tpr – is precharge time, 
- Tra – is row access time, 
- Tca – is column access time. 
 

Using of read and write commands with autoprecharge 
eliminates the precharge time when next access occurs, 
reducing the access time to Tra+Tca. Data accesses into 
already opened rows eliminate the precharge time and row 

access time, reducing the access time to Tca. The result is that 
consecutive accesses to different rows into single memory 
bank have larger latencies than consecutive accesses into the 
same row. Performance maximization of DRAM memories 
demands minimization of participation of precharges and rows 
openings. 

This makes that we can influence DRAM memory 
performances (latency) by controlling the data placement into 
banks and rows. This is the basis of papers in which address 
remappings are considered, which transform memory 
addresses into banks, rows and columns that optimize DRAM 
performances for certain memory access patterns [3, 4]. 

DRAM memory latency can be decreased if the opened row 
is closed just before the next data access directed to the same 
bank, but to different row, occurs. In that way the precharge 
time Tpr is being hidden, so the latency is practically reduced 
to Ta = Tra+Tca. The latency could be additionally reduced to 
Ta = Tca, by hiding the row access time. This demands the 
next row that is going to be accessed, to be opened in 
advance. In-time closing of the opened row demands a 
prediction when to close the opened row. Opening in advance 
the next row to be accessed demands a prediction which row 
to open and when. 

Papers [1, 2] deal with possibilities to predict the moment 
when the data block in the cache memory is to be declared 
'dead' (i.e. unnecessary present in the cache, because it is not 
to be used in the near future) and when and which data block 
to prefetch to the cache. Those ideas maybe could be applied 
to DRAM memories. That inspired us to investigate the 
possibilities of applying some of those ideas on DRAM 
memory performance optimization. In this paper we have 
restrained on ideas from [1], which relate to applying metrics 
of characteristic time parameters of data blocks transferred to 
cache memory. Analogically, we have defined proper 
characteristic time parameters for DRAM memories. By 
simulation, we have concluded that DRAM memory accesses 
have some regularities that can be used for prediction when to 
close the opened row. Based on those results, we have 
proposed a predictor, which could be integrated into existent 
DRAM memory controllers. 

The paper is organized as follows. In section II we consider 
the existent DRAM controller policies and the basic idea. In 
section III the used simulation model is exposed. Section IV 
gives a review of the obtained results, and section V is the 
conclusion. 

II. WHAT PREDICTION IS BASED ON? 

A classic DRAM controller uses two possible policies 
(strategies): Open Page (Row) Policy (Optimistic Policy) and 
Close Page (Row) Autoprecharge Policy (Pessimistic Policy). 
When using the first one, the row is kept opened, which 
decreases the latency if the next DRAM access is directed to 
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the same row as the previous, and increases the latency if the 
next DRAM access is directed to some other row. In the first 
case the latency is equal to Tca, and in the second it is equal to 
the sum Tpr+Tra+Tca. When using the second policy, a row is 
being closed after every access, so the latency is always the 
same – the sum Tra+Tca. The Open Row Policy gives good 
results if there is a good memory access locality, and the 
Close Row Autoprecharge Policy gives good results if DRAM 
accesses have mostly random character. In our previous 
papers [4, 5] we have already considered various possibilities 
of obtaining hybrid policies, which use the advantages of both 
policies. The goal is to achieve a policy more efficient than 
both the Open Row and Close Row Autoprecharge Policy, 
and in that way, decrease the DRAM latency. In ideal case the 
opened row should be kept open for as long as there are 
accesses into it, and not to some other row, and it should be 
closed after the last access into it. In that way the system 
would be prepared for the next row access. In that case the 
precharge time could be hidden every time the row is 
changed, which would decrease the latency. In this paper we 
consider a hybrid policy which strives to predict the moment 
when to close the opened row. 

Since we want to apply the metrics analogous to those from 
[1] in order to improve DRAM memory performances, let us 
first define those metrics related to DRAM memory. Live 
time is a time interval that elapses from opening the row in a 
bank until the last access into that row before its closing. Dead 
time is a time which elapses from the last access to open row 
until the moment of its closing. Access interval is a time 
interval which elapses between two consecutive accesses to 
open row in a bank. A live time of an open row is called a 
zero live time, if after its opening there are no further accesses 
to that row till its closing. If there is at least one access to 
already open row before its closing, then that row's live time 
is not a zero live time. 

An insight of open row entering into dead time is a signal 
for the DRAM controller to close that row, and eventually 
open some other row in the same bank. It would also be 
preferable for the DRAM controller to be able to recognize 
(i.e. to predict) opening row with zero live time, since in that 
case that row should be immediately closed. 

III. SYSTEM SIMULATION MODEL 

For simulation we have used the program Sim-Outorder 
from the Simplescalar Tool Set [6]. We have integrated this 
simulator with programs that simulate DRAM memories, 
written by ourselves. The characteristics of the simulated 
processor are: a superscalar processor that issues at most 4 
instructions on every clock cycle and supports out of order 
instruction execution. The processor clock frequency is 2 
GHz. As a branch predictor a two-level branch predictor was 
used. There are two levels of cache memories. The first one 
contains separate instruction and data caches. They are both 
16KB large; use direct mapping and have line size of 32B. 
The second level contains a unified cache, 1MB large, with 
set-associative mapping - associativity of 4, and line size of 
128B. All the cache memories use write-back policy. 

The simulated DRAM memory has the following 
characteristics: there are 4 banks in one chip, 4096 rows in a 
bank, the row capacity is 1KB, the precharge time, row access 
time, and column access time are 20 processor clock cycles 
each, the memory bus has 128 data lines. 

We have simulated executions of 6 benchmark programs 
from the SPEC95 suite: cc1, compress, ijpeg, li, m88ksim, 
and perl. The characteristics of those programs can be found 
in our previous papers [4, 5]. 

IV. RESULTS 

As a start, we have measured the following parameters: 
open row hit probability, number of zero live times, number 
of non zero live times, and average values for access interval, 
live time and dead time, measured in processor clock cycles. 
The results are shown in Table I. It can be seen that in 
benchmark programs with small open row hit probability (cc1, 
ijpeg, perl) number of zero live times is much greater than 
number of non zero live times, which is reasonable. In 
benchmarks with large open row hit probability (compress, li, 
m88ksim) there are much more non zero live times than zero 
live times. These results recommend to try researching the 
possibilities of designing a predictor which, when opening a 
row, predicts its live time as zero or nonzero. This will, 
probably, be a subject of our future work. If the other 
parameters are observed, it can be noticed that in all the cases, 
not dependable on the open row hit probability, the average 
value of access intervals is much less than the average value 
of dead times. This suggests a possibility of defining a simple 
predictor. If, from the last access to open row, a certain 
amount of time (equal to some boundary value) has elapsed, 
then that row should be closed, since it has probably entered 
the dead time. If that amount of time has not yet elapsed, the 
row is to be kept open. As a boundary, a value that is the same 
order of magnitude as the last access interval should be used. 
For instance, it could be the last access interval multiplied by 
2 or 4. 

 
TABLE I 

MEASURED CHARACTERISTICS OF BENCHMARK PROGRAMS 
 

Benchmark cc1 compress ijpeg 
Open row hit probability 0.34 0.84 0.31
Zero live times 58662 51 28895
Non zero live times 15811 587 2621
Access interval 65833 2889 28692
Live time 165718 17773 155700
Dead time 1243661 161594 580286

 
Benchmark li m88ksim perl 
Open row hit probability 0.76 0.83 0.07
Zero live times 59 101 1174201
Non zero live times 236 794 44955
Access interval 839903 643307 43078
Live time 3420116 3712389 97176
Dead time 18495793 19202689 135064
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Fig. 1. Average latencies in processor clock cycles for rgbc 
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Fig. 2. Average latencies in processor clock cycles for rgrbcx 
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Fig. 3. Average latencies in processor clock cycles for rbrgcx 
 
We have tried 2 variants for boundary levels – the last 

access interval multiplied by 2 and 4. The results are 
practically the same; i.e. the differences are insignificant. In 
this paper we show the results when the boundary value is 
equal to the access interval multiplied by 2. In paper [4] we 
have considered various address remappings, which increase 
the open row hit probability. In order to gain as objective 
evaluation as possible, we have tried 3 variants. The first one 
is a classical page interleaving scheme, which also can be 
named as row-group-bank-column (rgbc) by the sequence of 
meaning of the address bits, and the other two are the two 
address remappings from the mentioned paper that have 
showed as the best: rgrbcx and rbrgcx. For all of the named 
combinations we have tried two possible solutions. The first 
one uses only one common value of access interval, which is 
defined by every appearance of new access interval in any 

bank. In the second solution there is one value of access 
interval for each bank in the system. 

The average DRAM latencies, in processor clock cycles, are 
shown in Figs. 1, 2 and 3. These Figs. show average DRAM 
latencies when using Open Row Policy (Open Row), policies 
with the proposed simple predictor with a common value and 
with separate values of access interval (Common and 
Separate), and a policy with an ideal predictor, i.e. a predictor 
whose prediction accuracy would be 100% (Ideal). It can be 
seen that the proposed solutions, although simple, give rather 
good improvements. The encouraging thing is that 
improvements are obtained not only for the basic rgbc 
scheme, but also for the both address remapping schemes. 
This means that it is possible to apply the address remappings, 
which already give respectable improvements, together with 
the considered predictor to additionally increase the 
improvements. 

If we compare the solutions with a common value and with 
separate values of access interval, there are almost no 
differences among them. In the solution with a common value 
there are access interval interferences from different banks. 
That interference is removed when using separate values for 
each bank. This interference is not significant in a single 
program environment, which was the case of our simulations 
(this is why there are practically no differences in the results).  
In some cases (li and m88ksim with rgbc and ijpeg with 
rgrbcx and rbrgcx) worse results for Separate than Common 
could be explained by longer negative influences of extreme, 
relative to average, values of access interval. In a 
multiprogram environment access intervals of different 
programs can differ a lot. In that case the interference 
influence in the solution with a common value would 
dominate, which would certainly decrease the prediction 
accuracy, so this solution would show less performance 
improvement. We can conclude this from Table I, which 
shows that average access interval values for different 
programs can range up to 1 to 290 (for compress and li). 

Table II shows the prediction accuracy and coverage when 
using one common register for all the banks. The coverage is 
the part of accesses for which the predictor made a certain 
prediction, starting from the first appearance of access interval 
value. The prediction accuracies and coverages when using 
separate values for each bank are very similar to these ones, 
so we omit them. In Table II cr (close row) is the probability 
of the accurate prediction that the row should be closed, and 
ncr (not close row) is the probability of the accurate prediction 
that the row should be kept open. The proper coverages are 
given in the parenthesis. By simple addition of these coverage 
percentages it can be concluded that the percentage of the 
accesses not involved by the predictor is negligible – in 
almost all the cases it is about 1% or less. Only in case of li 
using basic page interleaving scheme this percentage is about 
5%. These accesses not involved by the predictor comprises 
all the first accesses which are zero live times, till the 
appearing of the first non zero live time, i.e. the first value for 
access interval, which is the moment when the predictor starts 
with the prediction process. If we see the prediction 
accuracies themselves it can be seen that in 29 of 36 cases 
they are more than 70%, and in 19 of 36 cases are more than 
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80%. These are rather good values. The high prediction 
accuracies also have high coverages in most of the cases. It 
happens, however, the predictions that the row should be kept 
open, to be very low, and to have rather high coverages, when 
using the basic page interleaving scheme, in the benchmarks 
with low open row probabilities (cc1 - 0.43 (63%), ijpeg - 
0.34 (80%) and perl - 0.08 (78%)). These cases deserve an 
attention to look for improvements – probably the mentioned 
predictor which predicts zero live times could give needed 
improvements. 

 
TABLE II 

PREDICTION ACCURACY AND COVERAGE FOR COMMON 
 

Benchmark cc1 compress ijpeg 
cr – rgbc. 0.79 (37%) 0.63 (21%) 0.80 (20%)
ncr – rgbc 0.43 (63%) 0.99 (78%) 0.34 (80%)
cr – rgrbcx. 0.78 (48%) 0.66 (21%) 0.79 (25%)
ncr – rgrbcx 0.85 (52%) 0.97 (79%) 0.96 (75%)
cr – rbrgcx. 0.74 (48%) 0.68 (21%) 0.70 (24%)
ncr – rbrgcx 0.89 (52%) 0.98 (78%) 0.94 (76%)

 
Benchmark li m88ksim perl 
cr – rgbc. 0.60 (27%) 0.78 (18%) 0.95 (22%)
ncr – rgbc 0.96 (68%) 0.99 (80%) 0.08 (78%)
cr – rgrbcx. 0.78 (29%) 0.86 (18%) 0.82 (30%)
ncr – rgrbcx 0.90 (70%) 0.96 (81%) 0.72 (70%)
cr – rbrgcx. 0.73 (31%) 0.82 (19%) 0.82 (32%)
ncr – rbrgcx 0.94 (67%) 0.98 (80%) 0.77 (68%)

 
Let us now consider how the implementation of the 

considered predictor would influence the complexity and price 
of the DRAM controller. The controller should have a counter 
for each bank (to take care of the elapsed time since the last 
access), one common register for all the banks in the system 
or separate registers, one for each bank, (for storing the last 
access interval value), and one comparator for each bank (for 
comparing the access interval register value(s) with the 
counters). In order to minimize the length of the counters, 
they could be triggered with a signal derived by dividing the 
DRAM’s clock. A simple shift operation by 1 or 2 positions 
over the access interval register(s) would be needed for 
defining the boundary value(s). By comparing this value with 
the counters the controller would decide whether to issue a 
precharge command or not. The controller that implements the 
Open Row Policy has a register for each bank for storing the 
last open row index, and comparators for comparing the index 
of the row to which the current access occurs with those 
registers. Compared to that, we could say that the controller 

with the proposed predictor would have similar complexity 
and price. 

 
V. CONCLUSION 

In this paper we have considered performances of DRAM 
memory with a controller that uses a simple predictor which 
predicts whether the opened DRAM row should be further 
kept open or it should be closed. The considered two solutions 
(the first one, with a common register, and the second one, 
with separated registers, for access intervals storing) are rather 
simple, and give good performance improvements, for all the 
three considered variants (the basic page interleaving scheme 
and the two address remapping schemes). The implementation 
of the considered solutions would be simple and with 
acceptable price. It is expected that the considered predictor, 
amplified with a predictor that predicts whether the live time 
is going to be a zero live time, would give additional 
performance improvements. This will be a subject of our 
further research. Also, we will focus our attention on 
designing a predictor which predicts which is the next row to 
be opened, after closing the current row. That kind of solution 
would additionally decrease the DRAM memory latency. 
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