

453

An Organization of System for Access Sharing to
Information Resources

Radi Romansky1, Iva Nikolova2

Abstract – This paper examines and describes some
organizational issues of the design of decentralized distributed
information space that allows information resources as files to be
shared in a synchronized and consistently manner amongst the
distributed users. Our work focuses mainly on presenting some
of the principles and technical approaches to the implementation
of the networking and the system infrastructures, as well as on
the possible approaches for optimization of the information
access and effective scheduling of the distributed processes.

Keywords – peer-to-peer networks, distributed systems,
distributed content sharing, file sharing, access sharing,
collaboration

I. INTRODUCTION

Organizing access to resources and deploying the computer
and communication networks that underpin this access
presents a number of challenges.

The sharing and coordinated use of resources is
fundamental to an increasing range of computer applications.
This sharing may involve not only file exchange, but also
direct access to computers, software, data, and other
resources, as is required by a range of collaborative problem-
solving and resource-brokering strategies [1-3].

In the recent years, a lot of research interests focus on the
content sharing networks and technologies [4-7] and their
analysis and application. More and more popular become the
computer applications that rely on the decentralization and
equality of participants [8 -15].

The object of our current research interest is the design and
organization of decentralized and dynamic, distributed
information space, which to integrate the information
resources that are shared by a group of users for support of
research and educational process within the intranet network.
The aim is to form a collaborative group of the PC’s of the
participants, in which the users are not only consumes of
resources, but also are providers of such resources.

The main goal of this work is to offer an organization and
implementation of collaborative application, in which the
users can exchange information, such as educational
materials. The problem actuality is verified by the work
 discussed in [11], [13], [14]. The computer application we
consider here, represent a small file-sharing system. Its

1 Radi Romansky, Faculty of Computer Systems and Control,
Computer Systems Department, Technical University of Sofia,
Bulgaria E-mail: rrom@tu-sofia.bg
2 Iva Nikolova, Faculty of Computer Systems and Control, Computer
Systems Department, Technical University of Sofia, Bulgaria
E-mail: inni@tu-sofia.bg

implementation is based on the architectural paradigm of the
decentralized peer-to-peer network topologies [15].

The use of a collaborative environment based on peer-to-
peer approach enables to take advantage of the following
characteristics of the decentralized P2P systems: (1)
scalability – constant complexity of the system regardless of
number of nodes in the system; (2) reliability – peer nodes are
connected directly without the need of a master server’s
arrangement, creating a flat, ad-hoc network topology, thus
the malfunction on any given node will not effect the whole
system. Only the data that has been stored on the peer that
crashed gets lost. The rest of the system works as before.

Therefore, in the process of building of such distributed
information space an important moment is the design of the
policies of the system and very well understanding of all the
scenarios that might occur. Following that principle, in the
next sections, we will describe the main organizational
features and technical aspects of implementation of the
networking and the system infrastructures.

II. AN ORGANIZATION OF THE NETWORKING
INFRASTRUCTURE

As it is well known the networking infrastructure sets up
the base of all high-level operations.

The distributed information space is formed by the network
integration of the PCs of the participants, called member peer
nodes or only peer nodes. The system architecture, shown in
Figure 1, is based on the decentralized model of P2P content-
sharing networks [15]. It has a Server-Client structure where
there is no centralized servers exists. All peer nodes are
connected directly and are equal i.e. each peer node that is
member of the collaborative group is empowered as both, a
server of files and also as a client that can request files from
other members, hence creating a flat network topology.

Fig.1. An illustration of the decentralized topology of the system

The system is designed to support two type operations –

join operations and file operations. In order to join the
network, a peer node must contact a node that is always

454

online, which give the joining peer the IP address of one the
existing peer nodes that are already a members of the group.
Each peer, however, will only have information about its
neighbors, which are peers that have a direct edge to it in the
network.

When the joining is made, a peer node can send its query
(e.g searching for a particular file) to the other peer nodes in
the network. File transfers made between member peer nodes
are always done directly through a data connection that is
made between peer sharing the file and the peer requesting for
it.

The requirement for support of group working means that
online resources may be shared and used by multiple
concurrent readers and writers.

The collaboration amongst peer nodes can take two forms:
(a) each peer node can request local files, shared from

remote peer node;
(b) each peer node can serve requests of remote peer nodes

for local files it owns.
This form of collaboration between peer nodes requires

concurrency control and usual concerns with liveness, safety
and fairness [15].

To achieve a multiple concurrent queries for files to be
processed simultaneously by a peer node, the network
infrastructure is implemented as a multithread model. The
simultaneously access of the multiple threads to the file
directories is ensured by using critical section objects for each
data structure.

Communications are built in the basis of numerous
messages passing. A given message contains the request type
and returned answer.

Two types of threads are empowered to take care of the
system operations: client and server threads. The first ones are
charged with client-side processing, forming the requests
toward the server threads, and with the receiving the
responses. They are created either by the main interface thread
of the application or by other client threads. The second ones
are created to correspond to the identity of the requesting
threads and are responsible for the server-side processing.
They accept all incoming connection requests and take the
appropriate actions to their processing.

Join Process

As it was mentioned above, if a peer node wants to join the
network, it needs to know the IP address of a peer node that is
already a member of the group. The peer nodes will connect
to each other and execute Join Algorithm. At its end, all the
members of the collaborative group will know about the new
member and the files that it has to share, and the new member
will know about all the existing members and the files they
have share.

We consider two steps join process: Initial join and Group
join. The concept of the Initial join process is illustrated in
Figure 2, where: (1) New peer node A connects to the Host
Cache to get the list of available online member peer nodes
already connected in the network; (2) The Host Cache sends
back the list with member peer nodes to the peer node A; (3)
Peer node A sends the connection request message to one of
member peer nodes, for example peer node B; (4) Member

peer node B replies with message granting peer node A to join
the network. Next, new peer node A automatically receives a
list with the IP addresses of all member peer nodes that are
online. With these member nodes it begins the second step of
the join process – Group Join. During that phase a connection
with each of these nodes in the list is established. At its end,
all the members will have information about the list of files
that are available locally at the new peer node, as well as the
new peer node will receives a list of files that are at the remote
node.

B

C

D

A E

Host Cache

(1) (2)

(3)

(4)
H

F

G I

J

Fig.2. Join process.

From the point of view of the multithread model, there is a

client and server parts of the join process that are
implemented as client and server threads.

On receipt of the user’s request to join in the group, the user
interface server thread creates a Initial Join Client Thread
(IJCT), maintained by IJoinClientThreadProc() function that
sends a connection request initial_join to the listener server
thread on the chosen remote peer node. As a result the server
AcceptThread creates a new thread to serve that connection
request. This server tread (IJST) is maintained by
IJoinServerThreadProc() function.

The IJCT begins the join process by sending its computer
name to the IJST. In return, the IJCT receives a list of the
computer names of the existing member peer nodes. Next, the
IJCT creates separate threads called Group Join Client Thread
(GJCT) that establishes a connection with each of the peer
nodes in the list. A Group Join Server Thread (GJST),
maintained by GJoinServerThreadProc() function is created
at each member peer node to correspond with the GJCTs on
the non-member node. Then, by accessing a global data
structures a GJCT receives a list of files that are available
locally at that peer. This list is sent to the corresponding
GJST. Mutually exclusive mechanisms and critical sections
objects control the access to the global data structures,
containing the identification of all member peer nodes and
their files. These connections are broken with competition of
join threads ‘executions.

III. DESIGN OF THE SYSTEM INFRASTRUCTURE

To construct such a versatile working environment, in
which the participated peer nodes can share and use
information resources among themselves without relying on a
dedicated server it is necessary all member nodes of the
collaborative group to maintain information about all the
members peer nodes and the files that they own. Additionally,
in the context of the decentralized management, a natural

455

tendency of such environment is to evolve over time (for
example, with joining and leaving peer nodes along their
resources). We are thus motivated to study how to improve
the availability of shared files, so that users can access any file
regardless of the current subset of online member peer nodes.
Maintenance replicas of a particular file can achieve this. If
replicas of files exist, they will serve the purpose of increasing
concurrent reads. When member peer nodes need to download
the latest copy of the file they can do from any location that
holds a valid replica.

Figure 3 illustrates an example scenario of the collaboration
amongst the member peer nodes: (1) Member peer node B and
Peer node D collaborate on file; (2) Peer A access file on D.

Peer-to-Peer
Network

P2P
Application

Peer Node A

User
Application

P2P
Application

Shared Files &
Replicas

Shared Files &
Replicas

User
Application

User
Application

P2P
Application

Shared Files &
Replicas

Peer Node D

(1)

(1)

(2)

Peer Node B
Fig.3. Example Scenario of collaboration

In reference to this, we consider the following system

design features:
• All peer nodes must dedicate folders on their hard disks to

store shared files or replicas. Before a peer node is ready to
join the network, all the local files must be registered by
creating replica lists for each file.

• Files present in the dedicated folder can be viewed or
modified by all member peer nodes except in the case if a
write operation is requested by a peer node for a file that is
being written to by another peer node or that files are not valid
replicas.

• When a peer node modifies a file, all previous replicas of
that file lose their status of being a replica and become old
copies of the file. Subsequent requests to use these old copies
of the file will cause to download the latest copy of the file so
that the users always work on a valid replica.

• When a peer nodes need to download the latest copy of a
file they can do so from any locations that hold a valid replica.
A concurrency can be improved by allowing a read operation
on a file that is being written to. In this case the user should be
warned that the copy being read might not be valid for too
long. To optimize the number of file transfers that occur
between peer nodes it considers a transfer to be only
performing after comparing the local replica of file with the
original file.

The system supports the following actions with shared files:
adding a new files; removing files; reading a file that belongs
to another member peer node; writing to a file that belongs to
another peer node; reading a remote file by fetching it from
one of its replica locations; choosing a location from where to

fetch the replica of a file; getting “Read” permissions for a file
that is currently being written to.

The following data structures are necessary to support these
functional requirements. We will present here with a view of
the object-oriented approach of the system implementation:

• Class CPeerInfo – each of the class objects contains the
name of member peer node, node’s IP address, a list of the
files, shared by this node;

• Class CFileInfo – each of the class objects contains
information about one of files, shared by a member peer node;

• Class CreplicaInfo – each of the class objects contains
data about various locations, where copies of a particular file
might exist.

The objects described are sorted in the linked lists:
• Class CPeerInfoList - contains the list of group

members
• Class CfileInfoList – contains the list of all files, shared

by a peer node
• CReplicaInfoList - contains the list of all peer nodes that

have valid copies of a particular file. The first node in the list
usually contains the identity of the owner of the file.

IV. SYSTEM FUNCTIONALITY TESTS

The P2P application has been developed on the top of the
architecture described for file exchange. The actual file
transfer happens over a direct TCP connection between the
requester and the owner nodes. Socket classes are used to
represent the connection between a client and server side.

The system is currently in a testing stage. It is completely
developed in MS Visual C++. The graphical user interface has
been programmed, using, document-view architecture, given
by MFC, as a SDI Windows Explorer Style application.

System functionality was tested in the real conditions of the
local computer nodes. The tests are carried out Windows XP
Professional, using 12 computers connected via 100Mbps
Ethernet LAN. The main purpose of the testing process was to
check the correctness of our implementation of the algorithms
and data structures in order to achieve the system
functionality. In Figures below are shown screen shots of the
tests we carried out with the application.

Bellow are presented some results of the experiments we
are carried out to observe the system functionality:

• Testing the execution of the Join Algorithm (Fig. 4)

Fig.4. New Peer Join - a node FKSU1311-9 joins to the node
FKSU1311-4 and both form a group.

456

• Reading a file from remote peer (Fig.5) by fetching it
from one of its replica locations

Fig.5. Receiving a replication table for a file, requested from node

FKSU1311-5.

• Choosing a location from where to fetch the replica file

(Fig.6).

(a) Choose a location

(b) Read a file that is fetched from FKSU1311-6

Fig.6. Choice of location

V. CONCLUSIONS

This paper describes some aspects of the organization of
decentralized file sharing system, which allows users to
contribute and to share information resources amongst them.
Our goal was to explore the feasibility of and the technical
approaches to the implementation to some of the benefits of
the architectural paradigm of the decentralized peer-to-peer
network topologies. We have tried to build a collaborative
group for a small number of peers as well as to outline the
principal tasks of the design and development of the network

and the system infrastructures, and the user interface that
implements the system functionality. In reference to this, it is
discussed some of the base algorithms and their
implementation along with the required data structures in
order to achieve the system functionalities.

There are several possible directions in expanding this
application that might be a challenge, interesting to solve in
the future: system performance characterization; providing of
search mechanisms (discovering the desired information
resources, giving its description); designing mechanisms that
ensure robustness, security, file authenticity and access
control. In the current implementation it considers that peer
trust each other and there is no need for any authentication or
encryption; User-level (instead of device-level) security and
authentication.

REFERENCES

[1] Foster, I., Kesselman, C. & Tuecke, S. (2001) “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations”,
International Journal of High Performance Computing
Applications, 15 (3), p 200-222, 2001.

[2] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman
(2001), “Grid information services for distributed resource
sharing”. In 10th IEEE International Symposium on High
Performance Distributed Computing, 2001, San Francisco CA,
IEEE Press.

[3] C. Shahabi, F. Banaei-Kashani (2002). “Decentralized
Resopurce Management for a Distributed Continuous Media
Server, IEEE Transactions on Parallel and Distributed Systems,
Vol. 13, #6, June 2002.

[4] Open Source Community. The free network project – rewiring
the internet. In http://freenet.sourceforge.net, 2001

[5] Fast Track Peer-to-peer technology company. In
http://fasttrack.nu/, 2001

[6] KaZaA file sharing network. In http://www.kazaa.com, 2002
[7] Gnutella. In http://gnutella.wego.com 2001
[8] S. Ratnassamy, P. Francis, M. Handley, R. Karp, and S. Shenker

(2001), “A scalable content-addressable network”. In
Proceedings of the ACM SIGCOMM’01 Conference, 2001

[9] Nejl, W., Wolf W. et al “EDUTELLA: a P2P Networking
infrastructure based on RDF”. In Proc. Of the 11th World Wide
Web Conference (Hawaii, USA, May, 2002)

[10] Cuenca-Acuna, F. M., Peery, C., Martin, R. P., Nguyen, T. D.
(2002), “PlanetP: using gossiping to build content addressable
peer-to-peer information sharing communities”. Technical
Report DCS-TR-487, Dept. of Computer Science, Ruthgers
Univ. (2002)

[11] Vassileva J. (2002): Supporting Peer-to-Peer User
Communities, in R. Meersman, Z. Tari et al. (Eds.) Proc.
CoopIS, DOA, and ODBASE, LNCS 2519, Springer: Berlin,
230-247 (2002).

[12] Kan, G. (2001) “Peer-to-Peer: Harnessing the Power of
disruptive technologies”, A. Oram (ed.), O’Reilly Press, USA,
2001.

[13] Bretze H., Vassileva J. (2003) “Motivating Cooperation in Peer
to Peer Networks” Proceedings User Modeling UM03.
Johnstown, PA, June 22-26, 2003, p. 218-227.

[14] Vassileva J. (2004) “Harnessing P2P Power in the Classroom”,
In Proc. Of ITS’2004, Braazil, August 2004.

[15] Peter, B., Tim, W., Bart, D., & Piet, D., (2002), “A Comparison
of Peer-to-Peer Architectures”, Broadband Communication
Networks Group (IBCN), Department of Information
Technology (ITEC), Ghent University, Belgium, 1-2, 2002.

