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Identification of Dynamic Systems using  
Spline Neural Networks 

B. Danković1, M. Milojković2, Z. Jovanović3 

 
Abstract- This paper demonstrates how spline neural networks 

can be used for identification of dynamic systems. A neuron is 
utilized to build spline networks with locally distributed 
dynamics to identify input/output models of dynamic processes. 
For static neural network design, cubic splines are used; for 
dynamic part, orthogonal Malmquist rational functions are used. 
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I. INTRODUCTION 

Artificial neural networks represent nonlinear parametric 
models which process signals without requiring a specified 
model structure. They are employed to a wide spectrum of 
problems as different as pattern recognition, communication, 
artificial vision and system control. They have great 
importance for system analysis and automatic control 
problems such as control tasks, fault diagnosis, real-time 
simulations and system identification.  

A subclass of artificial neural networks, so-called mapping 
neural networks, perform mathematically a mapping action 
from a domain of its input space to the output space. The 
mapping task is labelled static (or spatial) if there is no time-
dependency involved within the mapping action. In general, 
neural networks belonging to this category are capable of 
approximating a mathematical function to any desired degree 
of accuracy based upon training data pairs and thus can be 
applied to identify static nonlinearities. As regards the 
identification of static (memory-less) systems, the multilayer 
perceptron (MLP) an radial basis function (RBF) networks are 
the most commonly applied types [3], [6]. Both networks 
belong to the subcategory of spatial mapping neural networks, 
and are proved to be universal approximators of static 
nonlinearities [3], [6]. Therefore, the networks can fit a 
function to the measurements of a memory-less system to any 
degree of accuracy. 

In this paper, spline neural networks are used instead of 
RBF networks. Approximating functions with splines gives 
smoothness during approximation, i.e. sustain continuance of 
function and her derivates (up to three for cubic splines). 
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Several approaches were proposed to introduce dynamics to 
artificial neural networks to identify dynamic systems. The 
networks are essentially subdivided into structures with 
lumped dynamics and distributed dynamics. Structures with 
lumped dynamics suffer from extensive memory menagement 
problems since the input space dimension and training times 
increase with the used number of lagged measurements. 
Figure 1 shows the  process of identification using neural 
networks. 
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Fig 1 Process identification using neural networks 

 Contrary to these approaches with lumped dynamics, a 
novel class of neural networks arose with locally possess 
dynamic elements embodied within the neurons [6], [7], [8]. 
This class is labeled networks with distributed dynamics. In 
this paper, splines are used for static part of neural network; 
orthogonal Malmquist filter is used for dynamical part of the 
network instead of usual ARMAX filter [6]. 

II. DYNAMIC SPLINE UNITS 

u (k)p

u (k)1

... x(k) 1-z-1

1+z-1

n-z-1

+z-11
n

... an

a0 a1 an-1
...

y (k)iΣ

Multidimensional
         spline Malmquist type filter

 
Fig. 2 Dynamic processing unit with spline function in state space 

representation with p inputs and one output 
Figure 2 shows the modified structure of the dynamic 

neuron where spline cubic fuctions are used instead of RBFs. 
Instead of ARMAX filter, orthogonal Malmquist filter is used 
[9]. The filter input x(k) is calculated as a function of the p 
neuron inputs up(k) by a multidimensional  spline basis 
function [1], [2], with different biases with respect to each 
input. The mapping function of the spline function is given as: 
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Function approximation using splines has a form [4]: 
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where Cl is unknown coefficient which can be determined by 
solving equation: 

FAC =                                       (3) 
where: 
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for p inputs, we obtain: 
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where q=1,...,M. 
 

 
Fig. 3 Spline network with P inputs and one output 

Linear part of the network is given by Malmquist 
orthogonal filter: 
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where N is order of the linear part. 
Fig. 3 shows spline network with P inputs and one output 

comprising M dynamical spline units. 

III. PARAMETERS OPTIMIZATION 

Aim of algorithm for parameters optimization is to 
determine optimal parameter set which minimizes a quadratic 
performance index. 
Model output has a form: 
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where N is a number of spline units. 
Output from i-th spline unit: 
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where Q represents approximation order. 
Mean square error: 
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where a is unknown parameter set which should be 
determined. 
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Optimal parameters can be obtained in following way: 
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From (9) we obtain: 
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From (10) we obtain [5], [6]: 
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IV. CONCLUSION 

Further studies of the proposed neural structure with respect 
to the identification properties have shown that the network is 
capable of approximating an accurate input/output model of 
physical processes where the nonlinearity is a function of the 
process inputs. For a first time, multidimensional splines for 
static part and Malmquist orthogonal filters for dynamic part 
of neural network are introduced. The final results are: 
smoother approximation and more accurate identification. 
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